Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

Vlaams Parlement (2)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Modern Strategies for Heterocycle Synthesis
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Heterocycles feature widely in natural products, agrochemicals, pharmaceuticals and dyes, and their synthesis is of great interest to synthetic chemists in both academia and industry. The contributions of recent applications of new methodologies in C–H activation, photoredox chemistry, cross-coupling strategies, borrowing hydrogen catalysis, multicomponent and solvent-free reactions, regio- and stereoselective syntheses, as well as other new, attractive approaches for the construction of heterocyclic scaffolds are of great interest. This Special Issue is dedicated to featuring the latest research that is ongoing in the field of heterocyclic synthesis. It is expected that most submissions will focus on five- and six-membered oxygen and nitrogen-containing heterocycles, but structures incorporating other rings/heteroatoms will also be considered. Original research (communications, full papers and reviews) that discusses innovative methodologies for assembling heterocycles with potential application in materials, catalysis and medicine are therefore welcome.

Keywords

amine nucleophiles --- alkynoic acids --- cascade reaction --- gold catalysis --- fused N-heterocycles --- solid-phase synthesis --- ketone --- traceless synthesis --- natural products --- enol ethers --- photocatalysis --- photoredox --- visible-light-induced catalysis --- photoredox cyclization --- organic dyes --- heterocycles --- dihydrocoumarins --- synthesis --- 3-trifluoroacetyl coumarins --- phenols --- antifungal activities --- terpyridines --- 3,2′:6′,3″-terpyridine --- cyclohexanol derivative --- condensation --- heterocyclic --- 1,2,3-triazol --- triazolylmethyl phosphinate --- triazolylmethyl phosphate --- copper-catalyzed azide-alkyne cycloaddition --- click reaction --- azides --- cinnolines --- triazoles --- CuAAC --- alkynes --- cycloalkynes --- Richter cyclization --- Suzuki coupling --- fluorescence --- cytotoxicity --- coumarin --- pyrazolo[3,4-b]pyridine --- silica sulfuric acid --- 2H-pyran --- valence isomerism --- 1-oxa-triene --- dienone --- oxa-electrocyclization --- Knoevenagel --- propargyl Claisen --- cycloisomerization --- asymmetric dimeric β-carboline --- acylhydrazone group --- cytotoxic --- antitumor --- structure–activity relationship --- γ-lactam --- pyrrolidones --- multicomponent reactions --- organocatalysis --- pyridine --- CF3CO-acetylenes --- 1,3-oxazines --- fluorinated heterocycles --- saturated oxygen heterocycles --- cyclic ethers --- total synthesis --- multicomponent reaction --- α-halohydrazones --- Staudinger reaction --- aza-Wittig --- 1H-imidazole-2(3H)-thione --- 2H-imidazo[2,1-b][1,3,4]thiadiazine --- purine --- nucleobase --- aromatic substitution --- arylation --- fluoroalcohol --- α-chloroglycinates --- 5-acylamino-1,3-thiazoles --- Hantzsch reaction --- TMSBr --- propargylic alcohols --- cascade cyclization --- 4-bromo quinolines --- synthesis of benzofurans --- intra-molecular approach --- inter-molecular approach --- n/a --- 3,2':6',3"-terpyridine --- structure-activity relationship


Book
Anticancer Agents : Design, Synthesis and Evaluation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.

Keywords

benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds

Listing 1 - 2 of 2
Sort by