Listing 1 - 10 of 22 | << page >> |
Sort by
|
Choose an application
The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C*-algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of 'length' of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer.
Operator spaces. --- Matricially normed spaces --- Non-commutative Banach space theory --- Banach spaces --- Operator theory --- Operator spaces
Choose an application
This book presents an overview of modern Banach space theory. It contains sixteen papers that reflect the wide expanse of the subject. Articles are gathered into five sections according to methodology rather than the topics considered. The sections are: geometrical methods; homological methods; topological methods; operator theoretic methods; and also function space methods. Each section contains survey and research papers describing the state-of-the-art in the topic considered as well as some of the latest most important results. Researchers working in Banach space theory, functional analysis or operator theory will find much of interest here.
Banach spaces --- Functions of complex variables --- Generalized spaces --- Topology --- Methodology --- Banach space theory
Choose an application
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.
Banach spaces --- Parameter estimation --- Differential equations, Partial --- Banach, Espaces de --- Estimation d'un paramètre --- Equations aux dérivées partielles --- Banach spaces. --- Parameter estimation. --- Differential equations, Partial. --- Partial differential equations --- Estimation theory --- Stochastic systems --- Functions of complex variables --- Generalized spaces --- Topology --- Banach Space. --- Iterative Method. --- Regularization Theory. --- Tikhonov Regularization.
Choose an application
This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus
Stability --- Mathematical optimization. --- Orlicz spaces. --- Spaces, Orlicz --- Ideal spaces --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Operations research --- Simulation methods --- System analysis --- Dynamics --- Mechanics --- Motion --- Vibration --- Benjamin-Feir instability --- Equilibrium --- Mathematical models. --- Banach space. --- Functional Analysis. --- Optimization. --- Orlicz space. --- Stability.
Choose an application
A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.
Lipschitz condition --- order of convergence --- Scalar equations --- local and semilocal convergence --- multiple roots --- Nondifferentiable operator --- optimal iterative methods --- Order of convergence --- convergence order --- fast algorithms --- iterative method --- computational convergence order --- generalized mixed equilibrium problem --- nonlinear equations --- systems of nonlinear equations --- Chebyshev’s iterative method --- local convergence --- iterative methods --- divided difference --- Multiple roots --- semi-local convergence --- scalar equations --- left Bregman asymptotically nonexpansive mapping --- basin of attraction --- maximal monotone operator --- Newton–HSS method --- general means --- Steffensen’s method --- derivative-free method --- simple roots --- fixed point problem --- split variational inclusion problem --- weighted-Newton method --- ball radius of convergence --- Traub–Steffensen method --- Newton’s method --- fractional derivative --- Banach space --- multiple-root solvers --- uniformly convex and uniformly smooth Banach space --- Fréchet-derivative --- optimal convergence --- Optimal iterative methods --- basins of attraction --- nonlinear equation
Choose an application
Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include: (1) Embeddability of locally finite metric spaces into Banach spaces is finitely determined; (2) Constructions of embeddings; (3) Distortion in terms of Poincaré inequalities; (4) Constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees; (5) Banach spaces which do not admit coarse embeddings of expanders; (6) Structure of metric spaces which are not coarsely embeddable into a Hilbert space; (7) Applications of Markov chains to embeddability problems; (8) Metric characterizations of properties of Banach spaces; (9) Lipschitz free spaces. Substantial part of the book is devoted to a detailed presentation of relevant results of Banach space theory and graph theory. The final chapter contains a list of open problems. Extensive bibliography is also included. Each chapter, except the open problems chapter, contains exercises and a notes and remarks section containing references, discussion of related results, and suggestions for further reading. The book will help readers to enter and to work in a very rapidly developing area having many important connections with different parts of mathematics and computer science.
Banach spaces. --- Lipschitz spaces. --- Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Hölder spaces --- Function spaces --- Functions of complex variables --- Generalized spaces --- Topology --- Banach Space Theory. --- Bilipschitz Embedding. --- Coarse Embedding. --- Embedding of Discrete Metric Spaces. --- Functional Analysis. --- Graph Theory.
Choose an application
Complex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems.
multi-agent system (MAS) --- reinforcement learning (RL) --- mobile robots --- function approximation --- Opportunistic complex social network --- cooperative --- neighbor node --- probability model --- social relationship --- adapted PageRank algorithm --- PageRank vector --- networks centrality --- multiplex networks --- biplex networks --- divided difference --- radius of convergence --- Kung–Traub method --- local convergence --- Lipschitz constant --- Banach space --- fractional calculus --- Caputo derivative --- generalized Fourier law --- Laplace transform --- Fourier transform --- Mittag–Leffler function --- non-Fourier heat conduction --- Mei symmetry --- conserved quantity --- adiabatic invariant --- quasi-fractional dynamical system --- non-standard Lagrangians --- complex systems --- symmetry-breaking --- bifurcation theory --- complex networks --- nonlinear dynamical systems
Choose an application
Numerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖≤1; On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization).
Clenshaw–Curtis–Filon --- high oscillation --- singular integral equations --- boundary singularities --- local convergence --- nonlinear equations --- Banach space --- Fréchet-derivative --- finite integration method --- shifted Chebyshev polynomial --- Caputo fractional derivative --- Burgers’ equation --- coupled Burgers’ equation --- maxmin --- supporting vector --- matrix norm --- TMS coil --- optimal geolocation --- probability computing --- Monte Carlo simulation --- order statistics --- extreme values --- outliers --- multiobjective programming --- methods of quasi-Newton type --- Pareto optimality --- q-calculus --- rate of convergence --- wavelets on 3D ball --- uniform 3D grid --- volume preserving map --- Network --- graph drawing --- planar visualizations --- multiple root solvers --- composite method --- weight-function --- derivative-free method --- optimal convergence --- multivariate polynomial regression designs --- G-optimality --- D-optimality --- multiplicative algorithms --- G-efficiency --- Caratheodory-Tchakaloff discrete measure compression --- Non-Negative Least Squares --- accelerated Lawson-Hanson solver
Choose an application
In the past few decades, several interesting problems have been solved using fixed point theory. In addition to classical ordinary differential equations and integral equation, researchers also focus on fractional differential equations (FDE) and fractional integral equations (FIE). Indeed, FDE and FIE lead to a better understanding of several physical phenomena, which is why such differential equations have been highly appreciated and explored. We also note the importance of distinct abstract spaces, such as quasi-metric, b-metric, symmetric, partial metric, and dislocated metric. Sometimes, one of these spaces is more suitable for a particular application. Fixed point theory techniques in partial metric spaces have been used to solve classical problems of the semantic and domain theory of computer science. This book contains some very recent theoretical results related to some new types of contraction mappings defined in various types of spaces. There are also studies related to applications of the theoretical findings to mathematical models of specific problems, and their approximate computations. In this sense, this book will contribute to the area and provide directions for further developments in fixed point theory and its applications.
common coupled fixed point --- bv(s)-metric space --- T-contraction --- weakly compatible mapping --- quasi-pseudometric --- start-point --- end-point --- fixed point --- weakly contractive --- variational inequalities --- inverse strongly monotone mappings --- demicontractive mappings --- fixed point problems --- Hadamard spaces --- geodesic space --- convex minimization problem --- resolvent --- common fixed point --- iterative scheme --- split feasibility problem --- null point problem --- generalized mixed equilibrium problem --- monotone mapping --- strong convergence --- Hilbert space --- the condition (ℰμ) --- standard three-step iteration algorithm --- uniformly convex Busemann space --- compatible maps --- common fixed points --- convex metric spaces --- q-starshaped --- fixed-point --- multivalued maps --- F-contraction --- directed graph --- metric space --- coupled fixed points --- cyclic maps --- uniformly convex Banach space --- error estimate --- equilibrium --- fixed points --- symmetric spaces --- binary relations --- T-transitivity --- regular spaces --- b-metric space --- b-metric-like spaces --- Cauchy sequence --- pre-metric space --- triangle inequality --- weakly uniformly strict contraction --- S-type tricyclic contraction --- metric spaces --- b2-metric space --- binary relation --- almost ℛg-Geraghty type contraction
Choose an application
Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.
Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation
Listing 1 - 10 of 22 | << page >> |
Sort by
|