Narrow your search

Library

LUCA School of Arts (22)

Odisee (22)

Thomas More Kempen (22)

Thomas More Mechelen (22)

UCLL (22)

VIVES (22)

KU Leuven (21)

VUB (16)

ULiège (8)

FARO (6)

More...

Resource type

book (22)

periodical (1)


Language

English (22)


Year
From To Submit

2021 (1)

2020 (3)

2019 (2)

2014 (2)

2013 (1)

More...
Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Introduction to operator space theory
Author:
ISBN: 1139883011 0511064519 1107395135 051107297X 0511205562 0511058187 1107383900 1107360234 9780511064517 9781107360235 9780511205569 9780511072970 0521811651 9780521811651 Year: 2003 Volume: 294 Publisher: Cambridge, U.K. ; New York : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C*-algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of 'length' of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer.

Methods in Banach space theory : proceedings of the V Conference on Banach Spaces, Caceres, Spain, 13-18 September 2004
Authors: --- ---
ISBN: 9780511721366 9780521685689 9781107362871 1107362873 9780511894077 0511894074 129940538X 9781299405387 0521685680 1139882600 9781139882606 1107367786 9781107367784 1107372321 9781107372320 1107368782 9781107368781 1107365325 9781107365322 0511721366 Year: 2006 Publisher: Cambridge ; New York : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents an overview of modern Banach space theory. It contains sixteen papers that reflect the wide expanse of the subject. Articles are gathered into five sections according to methodology rather than the topics considered. The sections are: geometrical methods; homological methods; topological methods; operator theoretic methods; and also function space methods. Each section contains survey and research papers describing the state-of-the-art in the topic considered as well as some of the latest most important results. Researchers working in Banach space theory, functional analysis or operator theory will find much of interest here.


Multi
Radon Series on Computational and Applied Mathematics
Authors: --- --- ---
ISSN: 18653707 ISBN: 9783110255249 9783110255720 9783112204504 3110255723 3112204506 1283627922 9781283627924 3110255243 9786613940377 6613940372 Year: 2011 Volume: 10 Publisher: Berlin ; New York Walter de Gruyter

Loading...
Export citation

Choose an application

Bookmark

Abstract

Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.


Book
Optimization in Function Spaces
Authors: ---
ISBN: 1283166348 9786613166340 3110250217 9783110250213 9781283166348 3110250209 9783110250206 9783110250206 Year: 2011 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus


Book
Symmetry with Operator Theory and Equations
Author:
ISBN: 3039216678 303921666X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.


Book
Metric Embeddings
Author:
ISBN: 3110263408 9783110264012 3110264013 9783110263404 9783119166225 3119166227 9783110263404 Year: 2013 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include: (1) Embeddability of locally finite metric spaces into Banach spaces is finitely determined; (2) Constructions of embeddings; (3) Distortion in terms of Poincaré inequalities; (4) Constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees; (5) Banach spaces which do not admit coarse embeddings of expanders; (6) Structure of metric spaces which are not coarsely embeddable into a Hilbert space; (7) Applications of Markov chains to embeddability problems; (8) Metric characterizations of properties of Banach spaces; (9) Lipschitz free spaces. Substantial part of the book is devoted to a detailed presentation of relevant results of Banach space theory and graph theory. The final chapter contains a list of open problems. Extensive bibliography is also included. Each chapter, except the open problems chapter, contains exercises and a notes and remarks section containing references, discussion of related results, and suggestions for further reading. The book will help readers to enter and to work in a very rapidly developing area having many important connections with different parts of mathematics and computer science.


Book
Symmetry in Complex Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Complex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems.


Book
Numerical Methods
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Numerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖≤1; On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization).


Book
Theory and Application of Fixed Point
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past few decades, several interesting problems have been solved using fixed point theory. In addition to classical ordinary differential equations and integral equation, researchers also focus on fractional differential equations (FDE) and fractional integral equations (FIE). Indeed, FDE and FIE lead to a better understanding of several physical phenomena, which is why such differential equations have been highly appreciated and explored. We also note the importance of distinct abstract spaces, such as quasi-metric, b-metric, symmetric, partial metric, and dislocated metric. Sometimes, one of these spaces is more suitable for a particular application. Fixed point theory techniques in partial metric spaces have been used to solve classical problems of the semantic and domain theory of computer science. This book contains some very recent theoretical results related to some new types of contraction mappings defined in various types of spaces. There are also studies related to applications of the theoretical findings to mathematical models of specific problems, and their approximate computations. In this sense, this book will contribute to the area and provide directions for further developments in fixed point theory and its applications.


Book
Iterative Methods for Solving Nonlinear Equations and Systems
Authors: --- ---
ISBN: 3039219413 3039219405 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Keywords

Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation

Listing 1 - 10 of 22 << page
of 3
>>
Sort by