Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Thirty-five different buildings with successfully installed solar air systems are described and documented. The building types cover single family houses, apartment buildings, schools, sports halls, and industrial commercial buildings with six different configurations of solar air systems used. Each example building is described over several pages, with plans, performance details and illustrations provided. This is supplemented by a summary of the types of system used.
Choose an application
This monograph documents the current of state-of-art in Thermo- Active Foundations (TAFs) suitable for efficiently and sustainably heat and cooling buildings. TAFs, also referred to as thermal or energy piles, offer innovative and sustainable alternatives to ground-source heat pumps as well as other conventional heating, ventilating, and air conditioning (HVAC) systems to heat and cool commercial as well as residential buildings in several regions in the world. In summary, this monograph collects the latest multi-disciplinary advances in modeling, designing, and monitoring TAFs. Ultimately, it is hoped that this monograph will provide a comprehensive reference for both researchers and professionals interested in structural and thermal performance of TAFs and their applications in developing integrated and sustainable equipment and systems for the built environment.
Geothermal space heating. --- Foundations. --- Thermopiles. --- Buildings --- Sustainable buildings. --- Ecologically sustainable buildings --- Environmentally sustainable buildings --- Green buildings (Green technology) --- Sustainable development --- Electric batteries --- Architecture --- Building --- Structural engineering --- Underground construction --- Caissons --- Earthwork --- Masonry --- Soil consolidation --- Soil mechanics --- Walls --- Space heating, Geothermal --- Geothermal engineering --- Heating --- Thermal properties. --- Details
Choose an application
"Best practices for designing nonresidential geothermal systems (ground-source heat pump, closed-loop ground, groundwater, and surface-water systems) for HVAC design engineers, design-build contractors, GSHP subcontractors, and energy/construction managers; includes supplemental Microsoft Excel macro-enabled spreadsheets for a variety of GSHP calculations"--
Ground source heat pump systems --- Heat pumps --- Chauffage géothermique --- Techniques géothermiques --- Pompes à chaleur --- Design and construction --- Ground source heat pump systems. --- Air conditioning --- Heating --- Earth heat pump systems --- Geothermal heat pumps --- Geothermal heating and cooling systems --- Geothermal water heat pump systems --- Geothermal engineering --- Design and construction. --- Equipment and supplies --- Chauffage géothermique. --- Techniques géothermiques. --- Pompes à chaleur. --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Civil Engineering --- Geothermal space heating --- Chauffage géothermique. --- Techniques géothermiques. --- Pompes à chaleur. --- Heat pumps.
Choose an application
Open data and policy implications coming from data-aware planning entail collection and pre- and postprocessing as operations of primary interest. Before these steps, making data available to people and their decision-makers is a crucial point. Referring to the relationship between data and energy, public administrations, governments, and research bodies are promoting the construction of reliable and robust datasets to pursue policies coherent with the Sustainable Development Goals, as well as to allow citizens to make informed choices. Energy engineers and planners must provide the simplest and most robust tools to collect, process, and analyze data in order to offer solid data-based evidence for future projections in building, district, and regional systems planning. This Special Issue aims at providing the state-of-the-art on open-energy data analytics; its availability in the different contexts, i.e., country peculiarities; and its availability at different scales, i.e., building, district, and regional for data-aware planning and policy-making. For all the aforementioned reasons, we encourage researchers to share their original works on the field of open data and energy analytics. Topics of primary interest include but are not limited to the following: 1. Open data and energy sustainability; 2. Open data science and energy planning; 3. Open science and open governance for sustainable development goals; 4. Key performance indicators of data-aware energy modelling, planning, and policy; 5. Energy, water, and sustainability database for building, district, and regional systems; 6. Best practices and case studies.
data envelopment analysis --- Kohonen self-organizing maps --- factor analysis --- multiple regression --- energy efficiency --- social media --- energy-consuming activities --- energy consumption --- machine learning --- ontology --- energy performance certificate --- heating energy demand --- buildings --- data mining --- classification --- regression --- decision tree --- support vector machine --- random forest --- artificial neural network --- open data --- electrification modelling --- Malawi --- OnSSET --- MESSAGEix --- reproducibility --- collaborative work --- open modelling and data --- data-handling --- integrated assessment modelling --- data pre- and post-processing --- space heating --- domestic hot water --- market assessment --- EU28 --- district heating --- data analytics --- big data --- forecasting --- energy --- polygeneration --- clustering --- kNN --- pattern recognition --- heating --- building stock --- heat map --- spatial analysis --- heat density map --- building performance simulation --- parametric modelling --- energy management --- model calibration --- Passive House --- energy planning --- energy potential mapping --- urban energy atlas --- urban energy transition --- energy data --- data-aware planning --- spatial planning --- open data analytics --- smart cities --- open energy governance --- urban database --- energy mapping --- building dataset --- energy modelling
Choose an application
HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses are the key topics when improving energy performance in new and renovated buildings. This development has been boosted by the recently established nearly zero energy building requirements that will soon be in use in all EU Member States, as well as similar long-term zero energy building targets in Japan, the US, and other countries. The research covered in this Special Issue provides evidence of how new technical solutions have worked, in practice, in new or renovated buildings, and also discusses problems and how solutions should be further developed. Another focus is on the more detailed calculation methods needed for the correct design and sizing of dedicated systems, and for accurate quantification of energy savings. Occupant behavior and building operation is also examined, in order to avoid common performance gaps between calculated and measured performance. These topics demonstrate the challenge of high performance buildings as, in the end, comfortable buildings with good indoor climate which are easy and cheap to operate and maintain are expected by end customers. Ventilation performance, heating and cooling, sizing, energy predictions and optimization, load shifting, and field studies are some of the key topics in this Special Issue, contributing to the future of high performance buildings with reliable operation.
indoor air quality --- stratification --- chiller plants --- alternate operation --- displacement ventilation --- draught rate --- building --- indoor temperature after renovation --- DHW heating --- daylight factor --- energy --- energy performance modeling --- hybrid displacement device --- building energy modelling --- energy performance of buildings directive --- condenser evaporative precooling --- DHW energy use --- heating mode --- ground source heat pump --- personalized ventilation --- daylight --- existing buildings --- optimal energy management --- cooling --- mixing ventilation --- daylight survey --- user behavior --- local air change effectiveness --- basketball hall --- CFD --- sizing --- electricity use --- control strategy --- HVAC systems --- ventilation --- occupant behavior --- smart readiness indicator --- energy signature --- standard use --- building energy simulation --- outdoor air --- monitoring measurements --- COP --- qualitative control --- wind pressure --- decentralized ventilation unit --- field measurement --- thermal comfort --- student dormitories --- data-driven analysis --- energy performance --- daylight simulations --- air jet --- ISO 52016-1 --- multiple sensor nodes --- downdraught --- energy efficiency --- building pressure condition --- meteorological reanalysis data --- ISO 7730 --- thermal analysis --- Monte Carlo method --- corner impinging jet --- greenhouse --- Pro-GET-onE H2020 --- in situ measurements --- smart buildings --- skin temperature --- retirement home --- demand side management --- indoor climate --- user input data --- Indoor Environmental Quality (IEQ) --- ventilation renovation --- tracer gas --- gray box --- Jaya algorithm --- single room ventilation unit --- satellite-based solar radiation data --- chiller performance --- rooftop air conditioners --- smart grid --- TRNSYS --- stack effect --- space heating --- energy flexibility --- corner mixing ventilation --- load shifting --- heating power --- air exchange effectiveness --- indoor temperature uniformity --- demand response
Choose an application
Buildings are one of the main causes of the emission of greenhouse gases in the world. Europe alone is responsible for more than 30% of emissions, or about 900 million tons of CO2 per year. Heating and air conditioning are the main cause of greenhouse gas emissions in buildings. Most buildings currently in use were built with poor energy efficiency criteria or, depending on the country and the date of construction, none at all. Therefore, regardless of whether construction regulations are becoming stricter, the real challenge nowadays is the energy rehabilitation of existing buildings. It is currently a priority to reduce (or, ideally, eliminate) the waste of energy in buildings and, at the same time, supply the necessary energy through renewable sources. The first can be achieved by improving the architectural design, construction methods, and materials used, as well as the efficiency of the facilities and systems; the second can be achieved through the integration of renewable energy (wind, solar, geothermal, etc.) in buildings. In any case, regardless of whether the energy used is renewable or not, the efficiency must always be taken into account. The most profitable and clean energy is that which is not consumed.
artificial neural network --- thermal performance --- dynamic simulation --- building renovation --- zero energy building --- building --- energy productivity --- building sector --- three-phase unbalance minimization --- optimization --- seasonal performance factor (SPF) --- envelope transmittance --- demolition --- envelope airtightness --- building energy prediction --- energy --- Korean household energy consumption --- floor envelope design --- building refurbishment --- perturbation and observation --- glazing --- ground and water source heat pump (ASHP --- sensitivity --- energy efficiency promotion --- model predictive control --- renovation --- home energy management system --- energy tunnel --- performance parameter design --- air --- coefficient of performance (COP) --- Arab region --- building rehabilitation --- ground heat transfer --- residential buildings --- Deutsche Gesellschaft für Nachhaltiges Bauen (DGNB) --- policy design --- building user activity --- Leadership in Energy & --- lightweight expanded clay aggregate (LECA) --- energy renovation --- energy performance --- urban modelling --- Maghreb --- analytical hierarchy process --- surface cooling --- thermal insulation --- Level(s) --- subtropical climate --- energy efficiency --- green building rating systems --- Ipomoea batatas --- big data --- life cycle cost analysis --- domestic hot water (DHW) --- multi-family buildings --- greenhouse --- building energy --- passive architecture --- prediction --- Haute Qualité Environnementale (HQE) --- Minimum-Energy Building (MEB) --- energy modeling --- Mashreq --- simulation engines --- HVAC demand --- test method --- adjustable step size --- life cycle cost --- energy saving ratio --- Environmental Design (LEED) --- influencing factors --- GSHP and WSHP) --- energy use --- subtropical climate building --- single-person household --- heat load --- energy performance standard --- technology package --- energy-performance gap --- GCC --- Building Research Establishment Assessment Method (BREEAM) --- energy pile --- nearly zero energy building --- co-simulation --- new construction --- space heating --- building stock energy demand --- low power loss --- maximum power point tracking --- envelope thermography --- extensive green roof --- OPERA-MILP
Listing 1 - 6 of 6 |
Sort by
|