Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The aims of this volume are to highlight the tremendous pharmacological potential of protein kinase and protein phosphatase inhibitors, to provide a thorough overview of the most remarkable achievements in the field and to illustrate how beneficial these studies can be for the advancement of both basic knowledge on biological regulation and deregulation and for the clinical treatment of a wide spectrum of diseases. This goal is attained by contributions of leader investigators in the field, who address the issue from different angles.
Protein kinases --- Phosphoprotein phosphatases --- Inhibitors --- Phosphoprotein phosphohydrolases --- Protein phosphatases --- Protein phosphoesterases --- Protein phosphohydrolases --- Phosphatases --- Protein kinase --- Protein phosphotransferases --- Phosphotransferases --- Toxicology. --- Oncology . --- Pathology. --- Biochemistry. --- Pharmacology/Toxicology. --- Oncology. --- Medical Biochemistry. --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Chemistry --- Medical sciences --- Disease (Pathology) --- Diseases --- Medicine --- Medicine, Preventive --- Tumors --- Chemicals --- Pharmacology --- Poisoning --- Poisons --- Composition --- Toxicology --- Pharmacology. --- Medical biochemistry. --- Drug effects --- Medical pharmacology --- Chemotherapy --- Drugs --- Pharmacy --- Medical biochemistry --- Pathobiochemistry --- Pathological biochemistry --- Biochemistry --- Pathology --- Physiological effect
Choose an application
This book provides new and in-depth insights into molecular aspects of plant cell signaling in response to biotic, such as aphid- and grey mold disease-resistance, and abiotic stresses, such as soil salinity and drought stress, and additionally, functional analysis on signaling components involved in flowering, juvenility, GA signaling, and biosynthesis, and miRNA-regulated gene expression. Furthermore, plant acclimation was reported, with emphasis on mechanistic insights into the roles of brassinosteroids, cyclic AMP, and hydrogen sulfide, and the recent advances of transmembrane receptor-like kinases were refined. Clearly, plant cell signaling is an intensive topic and whether it is now or in the future, the emerging technology in functional analysis such as genome editing technologies, high-throughput technologies, integrative multiple-omics as well as bioinformatics can assist researchers to reveal novel aspects of the regulatory mechanisms of plant growth and development, and acclimation to environmental and biotic stresses. The achievement of such research will be useful in improving crop stress tolerances to increase agricultural productivity and sustainability for the food supply of the world.
salinity --- selenium (Se) --- crops --- reactive oxygen species (ROS) --- enzymatic anti-oxidative system --- drought --- GA --- DELLA --- ABF2 --- protein–protein interaction --- Arabidopsis --- endocytosis --- microRNAs --- miPEPs --- peptides --- development --- kinase --- receptor --- stress --- tobacco --- calcium --- calcite --- reactive oxygen species --- ion channels --- cellular signalization --- brassinosteroids --- receptor-like kinases --- GSK3-like kinases --- somatic embryogenesis receptor-like kinases --- protein phosphatases --- Malus domestica --- Rosaceae --- juvenility --- FLOWERING LOCUS C --- flowering --- Hydrogen sulfide --- S-sulfhydration --- plant hormone --- gasotransmitter --- disease resistance --- plant defense --- herbivore --- phytohormone --- plant biotic stress --- plant signalling --- Medicago truncatula --- abiotic stress --- cAMP --- cyclic nucleotides-gated channels --- plant innate immunity --- Botrytis cinerea --- tomato --- iprodione --- mutant --- transcriptome analysis --- metabolism --- catalytic activity --- dwarfism --- gene cloning --- MNP1 --- CPS --- ABA signaling --- brassinosteroid signaling cascade --- drought tolerance --- priming --- stress adaptation --- stress memory --- CRISPR/Cas9 --- DELLA/TVHYNP --- Dwarf --- GA20OX2 --- GA signaling --- n/a --- protein-protein interaction
Choose an application
Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.
hypoglycemia --- sodium dichloroacetate --- pyruvate dehydrogenase kinase --- pyruvate dehydrogenase --- oxidative stress --- neuron death --- cholangiocellular carcinoma --- mitochondria --- energy metabolism --- oxidative phosphorylation --- 4-HNE --- DRP1 --- ERK1/2 --- hippocampus --- JNK --- mitochondrial dynamics --- PKA --- protein phosphatases --- TUNEL --- DDE --- high-fat diet --- mitochondrial UCP2 --- ROS --- antioxidant system --- uncoupling protein --- mitochondria: energy metabolism --- lipid handling --- fatty acid oxidation --- potassium channel --- reactive oxygen species --- antioxidants --- life span --- aging --- BKCa channels --- pravastatin --- gemfibrozil --- liver --- colon --- mitochondrial function --- cyclosporin A --- mitochondria calcium buffering --- mitochondria bioenergetics --- mitochondria permeability transition pore --- inorganic phosphate --- hepatic fibrogenesis --- HtrA2/Omi --- reactive oxygen species stress --- mitochondrial homeostasis --- complex I (CI) deficiency --- metabolome and proteome profiling --- reactive oxygen species (ROS) --- respirasome assembly --- electron tunneling (ET) --- perilipin 5 --- lipid droplet --- H9c2 cardiomyoblasts --- adenine nucleotide translocase --- respiratory supercomplexes --- ETC complexes --- dentate granule cell --- epilepsy --- hyperforin --- LONP1 --- neuroprotection --- pilocarpine --- seizure --- siRNA --- cardioprotection --- mitochondrial permeability transition pores --- mitochondrial connexin 43 --- cardiolipin --- iron overload --- hepcidin --- transferrin --- ferritin --- ZIP --- inflammation --- mtDNA --- mitochondrial dysfunction --- muscle aging --- physical performance --- LHON --- Siberian population --- ancient mutation --- specific genetic background --- apoptosis --- human amniotic membrane --- mitochondrial cell death --- BAX --- BCL-2 --- tensile strength --- mitochondrial gene expression --- mtDNA transcription --- mtRNA --- post-transcriptional mtRNA processing --- dsRNA --- innate immunity --- interferon response --- amino acid neurotransmitter --- cerebellar amino acid metabolism --- hypoxia --- 2-oxoglutarate dehydrogenase --- tricarboxylic acid cycle --- heart --- cytoskeletal proteins --- mitochondrial interactions --- plectin --- tubulin beta --- signaling --- GW9662 --- ischemia reperfusion injury --- Langendorff --- myocardial --- pioglitazone --- redox state --- rosiglitazone --- TZD --- uncoupling --- ADP/ATP carrier --- KmADP --- dextran --- morphology --- cardiomyocytes --- telomere length --- telomerase activity --- development --- regeneration --- intranuclear mitochondria --- healthy cells --- electron and confocal microscopy --- signaling pathways --- ion homeostasis --- human diseases
Listing 1 - 3 of 3 |
Sort by
|