Listing 1 - 10 of 128 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
"As natural language processing spans many different disciplines, it is sometimes difficult to understand the contributions and the challenges that each of them presents. This book explores the special relationship between natural language processing and cognitive science, and the contribution of computer science to these two fields. It is based on the recent research papers submitted at the international workshops of Natural Language and Cognitive Science (NLPCS) which was launched in 2004 in an effort to bring together natural language researchers, computer scientists, and cognitive and linguistic scientists to collaborate together and advance research in natural language processing. The chapters cover areas related to language understanding, language generation, word association, word sense disambiguation, word predictability, text production and authorship attribution. This book will be relevant to students and researchers interested in the interdisciplinary nature of language processing.
Choose an application
Gain knowledge of various deep neural network architectures and their areas of application to conquer your NLP issues Key Features Gain insights into the basic building blocks of natural language processing Learn how to select the best deep neural network to solve your NLP problems Explore convolutional and recurrent neural networks and long short-term memory networks Book Description Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you'll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search. By the end of this book, you will not only have sound knowledge of natural language processing, but also be able to select the best text preprocessing and neural network models to solve a number of NLP issues. What you will learn Understand various preprocessing techniques for solving deep learning problems Build a vector representation of text using word2vec and GloVe Create a named entity recognizer and parts-of-speech tagger with Apache OpenNLP Build a machine translation model in Keras Develop a text generation application using LSTM Build a trigger word detection application using an attention model Who this book is for If you're an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must. Downloading the example code for this ebook: You can download the example code files for this ebook on GitHub at the following link: https://github.com/TrainingByPackt/Deep-Learning-for-Natural-Language-Processing . If you require support please email: custom...
Choose an application
Get up and running with the fundamentals of Amazon Alexa and build exciting IoT projects About This Book Gain hands-on experience of working with Amazon Echo and Alexa Build exciting IoT projects using Amazon Echo Learn about voice-enabled smart devices Who This Book Is For Alexa Skills Projects is for individuals who want to have a deep understanding of the underlying technology that drives Amazon Echo and Alexa, and how it can be integrated with the Internet of Things to develop hands-on projects. What You Will Learn Understand how Amazon Echo is already being used in various domains Discover how an Alexa Skill is architected Get a clear understanding of how some of the most popular Alexa Skills work Design Alexa Skills for specific purposes and interact with Amazon Echo to execute them Gain experience of programming for Amazon Echo Explore future applications of Amazon Echo and other voice-activated devices In Detail Amazon Echo is a smart speaker developed by Amazon, which connects to Amazon's Alexa Voice Service and is entirely controlled by voice commands. Amazon Echo is currently being used for a variety of purposes such as home automation, asking generic queries, and even ordering a cab or pizza. Alexa Skills Projects starts with a basic introduction to Amazon Alexa and Echo. You will then deep dive into Alexa Programming concepts such as Intents, Slots, Lambdas and maintaining your skill's state using DynamoDB. You will get a clear understanding of how some of the most popular Alexa Skills work, and gain experience of working with real-world Amazon Echo applications. In the concluding chapters, you will explore the future of voice-enabled applications and their coverage with respect to the Internet of Things. By the end of the book, you will have learned to design Alexa Skills for specific purposes and interact with Amazon Echo to execute these skills. Style and approach A practical guide filled with real world examples that will help you understand the process of creating Alexa Skills from scratch and it's real world applications. Downloading the example code for this book You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
Choose an application
Make NLP easy by building chatbots and models, and executing various NLP tasks to gain data-driven insights from raw text data Key Features Get familiar with key natural language processing (NLP) concepts and terminology Explore the functionalities and features of popular NLP tools Learn how to use Python programming and third-party libraries to perform NLP tasks Book Description Do you want to learn how to communicate with computer systems using Natural Language Processing (NLP) techniques, or make a machine understand human sentiments? Do you want to build applications like Siri, Alexa, or chatbots, even if you've never done it before? With The Natural Language Processing Workshop, you can expect to make consistent progress as a beginner, and get up to speed in an interactive way, with the help of hands-on activities and fun exercises. The book starts with an introduction to NLP. You'll study different approaches to NLP tasks, and perform exercises in Python to understand the process of preparing datasets for NLP models. Next, you'll use advanced NLP algorithms and visualization techniques to collect datasets from open websites, and to summarize and generate random text from a document. In the final chapters, you'll use NLP to create a chatbot that detects positive or negative sentiment in text documents such as movie reviews. By the end of this book, you'll be equipped with the essential NLP tools and techniques you need to solve common business problems that involve processing text. What you will learn Obtain, verify, clean and transform text data into a correct format for use Use methods such as tokenization and stemming for text extraction Develop a classifier to classify comments in Wikipedia articles Collect data from open websites with the help of web scraping Train a model to detect topics in a set of documents using topic modeling Discover techniques to represent text as word and document vectors Who this book is for This book is for beginner to mid-level data scientists, machine learning developers, and NLP enthusiasts. A basic understanding of machine learning and NLP is required to help you grasp the topics in this workshop more quickly.
Choose an application
Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook DescriptionBERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks.What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is forThis book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.
Choose an application
With the help of engaging activities, learn how to leverage Amazon Web Services for building serverless intelligent applications that can process information in no time Key Features Learn how to integrate Amazon's Simple Storage Services with AI and NLP projects Get to grips with serverless computing and its applications Create intelligent applications such as chatbots and image recognition models Book Description Are you fascinated with applications like Alexa and Siri and how they accurately process information within seconds before returning accurate results? Are you looking for a practical guide that will teach you how to build intelligent applications that can revolutionize the world of artificial intelligence? The Applied AI and NLP Workshop will take you on a practical journey where you will learn how to build artificial intelligence (AI) and natural language processing (NLP) applications with Amazon Web services (AWS). Starting with an introduction to AI and machine learning, this book will explain how Amazon S3, or Amazon Simple Storage Service, works. You'll then integrate AI with AWS to build serverless services and use Amazon's NLP service Comprehend to perform text analysis on a document. As you advance, the book will help you get to grips with topic modeling to extract and analyze common themes on a set of documents with unknown topics. You'll also work with Amazon Lex to create and customize a chatbot for task automation and use Amazon Rekognition for detecting objects, scenes, and text in images. By the end of The Applied AI and NLP Workshop, you'll be equipped with the knowledge and skills needed to build scalable intelligent applications with AWS. What you will learn Grasp the fundamentals of AI, ML, and AWS Explore the AWS command line, its interface, and its applications Import and export data to Amazon S3 Perform topic modeling on a set of documents to analyze common themes Develop a custom chatbot to get the latest stock market quotes Create a personal call center and connect it to the chatbot Who this book is for If you are a machine learning enthusiast, data scientist, or programmer who wants to explore AWS's artificial intelligence and machine learning capabilities, this book is for you. Although not necessary, a basic understanding of AI and NLP will assist with grasping key topics quickly.
Choose an application
Get well-versed with traditional as well as modern natural language processing concepts and techniques Key Features Perform various NLP tasks to build linguistic applications using Python libraries Understand, analyze, and generate text to provide accurate results Interpret human language using various NLP concepts, methodologies, and tools Book Description Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you'll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you'll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learn Understand how NLP powers modern applications Explore key NLP techniques to build your natural language vocabulary Transform text data into mathematical data structures and learn how to improve text mining models Discover how various neural network architectures work with natural language data Get the hang of building sophisticated text processing models using machine learning and deep learning Check out state-of-the-art architectures that have revolutionized research in the NLP domain Who this book is for This NLP Python book is for anyone looking to learn NLP's theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough...
Listing 1 - 10 of 128 | << page >> |
Sort by
|