Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The book presents a solution for direct and inverse heat conduction problems. In the first part, the authors discuss the theoretical basis for the heat transfer process. In the second part, they present selected theoretical and numerical problems in the form of exercises with their subsequent solutions. Such layout of the book will allow the reader to become more familiar with step-by-step calculation methods and with the practical application of the equations to the solution of design and utilization problems of thermal machinery. It will also help to master complex mathematics behind the heat transfer theory. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods such as: the finite difference method, the finite volume method, the finite element method and the boundary method. Unlike other books on the subject, the superposition method is thoroughly presented. Particular attention is paid to the solution of inverse heat conduction problems. The authors took special care that the solved inverse problems can be implemented in indirect measurements of boundary heat flux and heat transfer coefficient. Included in this text is the determination of optimal fluid temperature changes during heating and cooling of solids. In great detail the problems of temperature transients caused by both moveable and immovable heat sources is discussed. They analyze the melting and freezing processes, including the freezing of food products. Moreover, they use computing programs written in Fortran language for solving mathematical equations. The book content is strengthened by additional materials presented at the back of the book, which include, among others, the description of basic mathematical functions characteristic of heat transfer problems, calculation of the inverse Laplace transformation, the property tables for stable thermophysical bodies and shape coefficients for isothermal surfaces of various shapes and programs that are typically used for solving differential equations. This book is strongly recommended for undergraduate and PhD students, researchers and academics of Power, Process, Mechanical and Environmental Engineering Faculties. The book should also appeal to those who conduct research in the area of thermal engineering, house-heating, air-conditioning systems and cooling processes, combustion engines and welding technology.
Engineering. --- Engineering Thermodynamics, Heat and Mass Transfer. --- Engineering Fluid Dynamics. --- Thermodynamics. --- Hydraulic engineering. --- Ingénierie --- Thermodynamique --- Technologie hydraulique --- Heat -- Conduction -- Mathematical models. --- Inverse problems (Differential equations). --- Science. --- Heat --- Inverse problems (Differential equations) --- Physics --- Mechanical Engineering --- Physical Sciences & Mathematics --- Engineering & Applied Sciences --- Thermodynamics --- Mechanical Engineering - General --- Conduction --- Mathematical models --- Mathematical models. --- Heat engineering. --- Heat transfer. --- Mass transfer. --- Fluid mechanics. --- Differential equations --- Electromagnetic waves --- Cold --- Combustion --- Fire --- Temperature --- Thermochemistry --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Heat-engines --- Quantum theory --- Engineering, Hydraulic --- Engineering --- Fluid mechanics --- Hydraulics --- Shore protection --- Construction --- Industrial arts --- Technology --- Hydromechanics --- Continuum mechanics --- Mass transport (Physics) --- Transport theory --- Heat transfer --- Thermal transfer --- Transmission of heat --- Energy transfer --- Mechanical engineering
Choose an application
This textbook presents the classical topics of conduction heat transfer and extends the coverage to include chapters on perturbation methods, heat transfer in living tissue, and microscale conduction. This makes the book unique among the many published textbook on conduction heat transfer. Other noteworthy features of the book are: The material is organized to provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Mathematical techniques are presented in a clear and simplified fashion to be used as instruments in obtaining solutions. The simplicity of one-dimensional conduction is used to drill students in the role of boundary conditions and to explore a variety of physical conditions that are of practical interest. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Students are trained to follow a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. Solutions to all examples and end-of-chapter problems follow an orderly problems solving approach. Extensive training material is available on the web The author provides an extensive solution manual for verifiable course instructors on request. Please send your request to heattextbook@gmail.com.
Electronic books. -- local. --- Heat -- Conduction. --- Heat -- Transmission. --- Civil Engineering --- Thermodynamics --- Civil & Environmental Engineering --- Physics --- Physical Sciences & Mathematics --- Engineering & Applied Sciences --- Heat --- Conduction. --- Transmission. --- Conduction of heat --- Heat transfer --- Thermal transfer --- Transmission of heat --- Engineering. --- Fluids. --- Thermodynamics. --- Heat engineering. --- Heat transfer. --- Mass transfer. --- Fluid mechanics. --- Engineering Fluid Dynamics. --- Engineering Thermodynamics, Heat and Mass Transfer. --- Fluid- and Aerodynamics. --- Energy transfer --- Hydraulic engineering. --- Construction --- Industrial arts --- Technology --- Engineering, Hydraulic --- Engineering --- Fluid mechanics --- Hydraulics --- Shore protection --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Heat-engines --- Quantum theory --- Hydrostatics --- Permeability --- Mass transport (Physics) --- Transport theory --- Mechanical engineering --- Hydromechanics --- Continuum mechanics
Choose an application
Complex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems.
multi-agent system (MAS) --- reinforcement learning (RL) --- mobile robots --- function approximation --- Opportunistic complex social network --- cooperative --- neighbor node --- probability model --- social relationship --- adapted PageRank algorithm --- PageRank vector --- networks centrality --- multiplex networks --- biplex networks --- divided difference --- radius of convergence --- Kung–Traub method --- local convergence --- Lipschitz constant --- Banach space --- fractional calculus --- Caputo derivative --- generalized Fourier law --- Laplace transform --- Fourier transform --- Mittag–Leffler function --- non-Fourier heat conduction --- Mei symmetry --- conserved quantity --- adiabatic invariant --- quasi-fractional dynamical system --- non-standard Lagrangians --- complex systems --- symmetry-breaking --- bifurcation theory --- complex networks --- nonlinear dynamical systems
Choose an application
Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.
Heat -- Conduction -- Measurement. --- Heat -- Transmission -- Measurement. --- Heat -- Transmission. --- Nanoelectromechanical systems -- Thermal properties. --- Nanostructured materials -- Thermal properties. --- Nanostructures -- Thermal properties. --- Nanostructures. --- Nanotechnology. --- Thermal conductivity. --- Nanostructured materials --- Nanostructures --- Nanoelectromechanical systems --- Thermal conductivity --- Heat --- Nanotechnology --- Miniaturization --- Natural Science Disciplines --- Manufactured Materials --- Thermodynamics --- Thermal Conductivity --- Technology, Industry, and Agriculture --- Technology --- Physical Phenomena --- Disciplines and Occupations --- Phenomena and Processes --- Technology, Industry, Agriculture --- Electrical & Computer Engineering --- Chemical & Materials Engineering --- Physics --- Materials Science --- Physics - General --- Electrical Engineering --- Engineering & Applied Sciences --- Physical Sciences & Mathematics --- Thermal properties --- Transmission --- Conduction --- Measurement --- Microelectromechanical systems. --- Transmission. --- MEMS (Microelectromechanical systems) --- Micro-electro-mechanical systems --- Micro-machinery --- Microelectromechanical devices --- Micromachinery --- Micromachines --- Micromechanical devices --- Micromechanical systems --- Heat transfer --- Thermal transfer --- Transmission of heat --- Coefficient of conductivity --- Conductivity, Heat --- Conductivity, Thermal --- Heat conductivity --- Molecular technology --- Nanoscale technology --- Physics. --- Physics, general. --- Transport theory --- High technology --- Electromechanical devices --- Microtechnology --- Mechatronics --- Energy transfer
Choose an application
The problem of solving complex engineering problems has always been a major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of numerical methods has increased exponentially in the last few years, due to modern computers in the field of structural mechanics. Moreover, a wide range of numerical methods have been presented in the literature for solving such problems. Structural mechanics problems are dealt with using partial differential systems of equations that might be solved by following the two main classes of methods: Domain-decomposition methods or the so-called finite element methods and mesh-free methods where no decomposition is carried out. Both methodologies discretize a partial differential system into a set of algebraic equations that can be easily solved by computer implementation. The aim of the present Special Issue is to present a collection of recent works on these themes and a comparison of the novel advancements of both worlds in structural mechanics applications.
direction field --- tensor line --- principal stress --- tailored fiber placement --- heat conduction --- finite elements --- space-time --- elastodynamics --- mesh adaptation --- non-circular deep tunnel --- complex variables --- conformal mapping --- elasticity --- numerical simulation --- numerical modeling --- joint static strength --- finite element method --- parametric investigation --- reinforced joint (collar and doubler plate) --- nonlocal elasticity theory --- Galerkin weighted residual FEM --- silicon carbide nanowire --- silver nanowire --- gold nanowire --- biostructure --- rostrum --- paddlefish --- Polyodon spathula --- maximum-flow/minimum-cut --- stress patterns --- finite element modelling --- laminated composite plates --- non-uniform mechanical properties --- panel method --- marine propeller --- noise --- FW-H equations --- experimental test --- continuation methods --- bifurcations --- limit points --- cohesive elements --- functionally graded materials --- porosity distributions --- first-order shear deformation theory --- shear correction factor --- higher-order shear deformation theory --- equivalent single-layer approach --- n/a
Choose an application
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
signal processing --- thermodynamics --- heat pulse experiments --- quantum mechanics --- variational formulation --- Wigner function --- nonholonomic constraints --- thermal expansion --- homogeneous spaces --- irreversible processes --- time-slicing --- affine group --- Fourier analysis --- non-equilibrium processes --- harmonic analysis on abstract space --- pseudo-temperature --- stochastic differential equations --- fourier transform --- Lie Groups --- higher order thermodynamics --- short-time propagators --- discrete thermodynamic systems --- metrics --- heat equation on manifolds and Lie Groups --- special functions --- poly-symplectic manifold --- non-Fourier heat conduction --- homogeneous manifold --- non-equivariant cohomology --- Souriau-Fisher metric --- Weyl quantization --- dynamical systems --- symplectization --- Weyl-Heisenberg group --- Guyer-Krumhansl equation --- rigged Hilbert spaces --- Lévy processes --- Born–Jordan quantization --- discrete multivariate sine transforms --- continuum thermodynamic systems --- interconnection --- rigid body motions --- covariant integral quantization --- cubature formulas --- Lie group machine learning --- nonequilibrium thermodynamics --- Van Vleck determinant --- Lie groups thermodynamics --- partial differential equations --- orthogonal polynomials
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Choose an application
Recently, energy development has received significant attention through the promising results of technology development, experimentation, computational modeling, and validation. However, it remains a persistent challenge to produce the needed energy while significantly reducing the environmental effects, such as the emission of greenhouse gases, which lead to climate change. Moreover, technological and economic limitations may also hinder energy development for sustainability. This book entitled Energy Development for Sustainability covers technologies, products, equipment, and devices as well as energy services based on software and data protected by patents and/or trademarks. This book will serve as a collection of the latest scientific and technological approaches to various energy development initiatives for sustainability encompassing novel sonocatalytic application and integrated algal and sludge-based wastewater treatment system, energy storage, sustainable building, gas absorption, organosolv pretreatment, energy usage and CO2 emission in transportation, coal regulation for energy, solar photovoltaic system, torrefaction for fuel production, energy management system, clean energy incubator, biofuels from microalgae, and the influence of COVID-19 on climate change. Overall, this book addresses researchers, advanced students, technical consultants, as well as decision-makers in industries and politics. This book contains comprehensive overview and in-depth technical research papers addressing recent progress in the area of energy development for sustainability. We hope the readers will enjoy this book.
multi-objective optimization --- bioenergy --- biomass --- microalgae --- sludge --- wastewater --- algae --- biofuel production --- environmental policy --- life cycle assessment --- clean energy incubator --- core competitiveness evaluation --- matter-element extension --- TOPSIS --- KPCA --- NSGA-II --- LSSVM --- smart grid --- time-of-use --- demand bidding program --- battery energy storage system --- direct search method --- sorghum distilled residue --- thermogravimetric analysis --- torrefaction kinetics --- biomass and bioenergy --- particle swarm optimization (PSO) --- biochar --- LMDI decomposition --- spatiotemporal analysis --- ASEAN --- climate change --- CO2 emissions --- light trapping --- zero-depth concentrator --- light reflection --- internal-cell spacing --- energy system --- coal regulation --- pollution abatement --- environmental benefits --- health benefits --- transport --- spatial LMDI --- emissions --- Philippines --- Google Maps --- transportation --- energy use --- modeling --- vehicle flow --- organosolv pretreatment --- delignification --- fractionation --- organic solvent --- degraded empty fruit bunch --- COVID-19 --- CO2 --- fossil fuel --- Malaysia --- metal–organic framework --- MIL-101 --- solvent free --- adsorption --- carbon dioxide --- air conditioner --- cooling load --- heat conduction --- residential building --- roof insulation --- roof tile color --- solar reflectance --- metal–air battery --- carbon particles --- biomass waste --- electro-catalyst --- g-C3N4 --- carbon composite --- coconut shell husk --- characteristic --- sonocatalytic degradation --- malachite green
Choose an application
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
karst carbonate reservoir --- fracture compressibility --- enhanced gas recovery --- cost of electricity (COE) --- microstructure --- permeability --- CO2 permeability --- ammonia --- shale oil --- process simulation --- aquifer support --- spatiotemporal characteristics --- semi-analytical solution --- injection orientation --- CO2 diffusion --- wellbore temperature --- fluid front kinetics --- nest of tubes --- supercritical CO2 --- multiple parallel fractures --- multifractal theory --- real-scale --- techno-economic model --- fractal --- inter-well connectivity --- apparent permeability --- heat transfer --- porous media --- multiple structural units (MSU) --- coupled heat conduction and advection --- diffusion --- bottom-hole pressure --- tight reservoir --- ventilation --- surface diffusion --- unsteady process --- underground coal gasification (UCG) --- dynamic crack tip --- mercury intrusion porosimetry --- energy conservation analysis --- methanol --- comprehensive heat transfer model --- pressure fluctuations --- production optimization --- numerical simulation --- percolation model --- rheology --- drilling --- AE energy --- pipeline network --- natural gas --- huff-‘n-puff --- cement --- viscosity --- mathematical modeling --- enhanced geothermal systems --- cement slurries --- yield stress --- non-Newtonian fluids --- capacitance-resistance model --- thixotropy --- conductivity --- enhanced oil recovery --- leakage and overflow --- geothermal --- coal and rock fracture --- impact pressure --- computational fluid dynamics (CFD) --- GSHP (ground source heat pump) --- pore size distribution --- Knudsen diffusion --- hydraulic fracturing --- efficient simulation --- constitutive relations --- electricity generation --- fractal theory --- pore structure --- complex fracture network --- sloshing --- cost-effective --- slippage effect --- dynamic hydraulic-fracturing experiments --- critical porosity --- fracture uncertainty --- carbon capture and utilization (CCU) --- tube bundle model --- continuity/momentum and energy equations coupled --- main gas pipeline --- Coal excavation --- longitudinal dispersion coefficient --- computational fluid dynamic (CFD) --- flowback --- fracture simulation --- highly viscous fluids --- carbon capture and storage (CCS) --- energy dissipation --- economics --- particles model --- variable viscosity --- multi-pressure system --- frequency conversion technology (FCT) --- three-dimensional numerical simulation --- tight oil reservoirs --- multiphase flow --- methane removal --- Navier-Stokes equations
Listing 1 - 9 of 9 |
Sort by
|