Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Die Wahrscheinlichkeitstheorie gehört zu den Kerndisziplinen der modernen Mathematikausbildung. Sie ist die Grundlage für alle Modelle, die "Risiko" und "Unsicherheit" einbeziehen. Dieses Lehrbuch gibt einen direkten, verlässlichen und modernen Zugang zu den wichtigsten Ergebnissen der mathematischen Wahrscheinlichkeitstheorie. Aufbauend auf dem Band "Maß & Integral" werden zunächst elementare Fragen Wahrscheinlichkeitsverteilungen, Zufallsvariable, Unabhängigkeit, bedingte Wahrscheinlichkeiten und charakteristische Funktionen - bis hin zu einfachen Grenzwertsätzen behandelt. Diese Themen werden dann um das Studium von Summen unabhängiger Zufallsvariablen - Gesetze der Großen Zahlen, Null-Eins-Gesetze, random walks, zentraler Grenzwertsatz von Lindeberg-Feller - ergänzt. Allgemeine bedingte Erwartungen, Anwendungen von charakteristischen Funktionen und eine Einführung in die Theorie unendlich teilbarer Verteilungen und der großen Abweichungen runden die Darstellung ab. In gleicher Ausstattung erscheint der Folgeband "Martingale & Prozesse". Lösungen zu den im Buch befindlichen Übungsaufgaben unter: http://www.motapa.de/stoch/index.shtml
Probabilities --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk
Choose an application
Bernstein functions appear in various fields of mathematics, e.g. probability theory, potential theory, operator theory, functional analysis and complex analysis - often with different definitions and under different names. Among the synonyms are `Laplace exponent' instead of Bernstein function, and complete Bernstein functions are sometimes called `Pick functions', `Nevanlinna functions' or `operator monotone functions'. This monograph - now in its second revised and extended edition - offers a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections. For the second edition the authors added a substantial amount of new material. As in the first edition Chapters 1 to 11 contain general material which should be accessible to non-specialists, while the later Chapters 12 to 15 are devoted to more specialized topics. An extensive list of complete Bernstein functions with their representations is provided.
Analytic functions. --- Monotonic functions. --- Quasianalytic functions. --- Functions, Quasianalytic --- Quasi-analytic functions --- Quasientire functions in the sense of Bernstein --- Analytic functions --- Functions, Monotonic --- Functions of real variables --- Functions, Analytic --- Functions, Monogenic --- Functions, Regular --- Regular functions --- Functions of complex variables --- Series, Taylor's --- Bernstein Function. --- Monotone Function. --- Probability Measure. --- Semigroup. --- Theory.
Choose an application
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors' aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Brownian motion processes. --- Stochastic processes. --- Random processes --- Probabilities --- Wiener processes --- Brownian movements --- Fluctuations (Physics) --- Markov processes --- Brownian Motion. --- Numerical Simulation. --- Stochastic Calculus. --- Stochastic Process.
Listing 1 - 3 of 3 |
Sort by
|