Listing 1 - 10 of 65 | << page >> |
Sort by
|
Choose an application
The definitive reference for space engineers on rendezvous and docking/berthing (RVD/B) related issues, this book answers key questions such as: How does the docking vehicle accurately approach the target spacecraft? What technology is needed aboard the spacecraft to perform automatic rendezvous and docking, and what systems are required by ground control to supervise this process? How can the proper functioning of all rendezvous-related equipment, systems and operations be verified before launch? The book provides an overview of the major issues governing approach and mating strategies, and system concepts for rendezvous and docking/berthing. These issues are described and explained such that aerospace engineers, students and even newcomers to the field can acquire a basic understanding of RVD/B. The author would like to extend his thanks to Dr Shufan Wu, GNC specialist and translator of the book's Chinese edition, for his help in the compilation of these important errata.
Orbital rendezvous (Space flight) --- Space vehicles --- 629.78 --- Docking of space vehicles --- Space vehicle docking --- Aerospace engineering --- Space rockets --- Spacecraft --- Spaceships --- Astronautics --- Navigation (Astronautics) --- Rocketry --- Vehicles --- Rendezvous, Orbital --- Rendezvous (Space) --- Rendezvous in space --- Space orbital rendezvous --- Space flight --- Space ships --- Space stations --- Automatic control --- Docking --- Ruimteschip --- Piloting --- Orbital rendezvous (Space flight). --- Mechanical Engineering --- Engineering & Applied Sciences --- Aeronautics Engineering & Astronautics --- Automatic control. --- Docking.
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
chemoinformatics --- drug design --- Molecular modeling --- Computational Chemistry --- QSAR --- molecular docking --- QSPR --- Virtual Screening --- molecular dynamics
Choose an application
Drug repositioning is the process of identifying new indications for existing drugs. At present, the conventional de novo drug discovery process requires an average of about 14 years and US$2.5 billion to approve and launch a drug. Drug repositioning can reduce the time and cost of this process because it takes advantage of drugs already in clinical use for other indications or drugs that have cleared phase I safety trials but have failed to show efficacy in the intended diseases. Historically, drug repositioning has been realized through serendipitous clinical observations or improved understanding of disease mechanisms. However, recent technological advances have enabled a more systematic approach to drug repositioning. This eBook collects 16 articles from 112 authors, providing readers with current advances and future perspectives of drug repositioning.
database --- Integrative strategies --- molecular docking --- polypharmacology --- multi-omics --- computational analysis --- Drug Repositioning --- data sharing --- Patenting
Choose an application
Marine habitats are promising sources to identify novel organisms and compounds. A total of 70% of the planet’s surface is covered by ocean, and little is known about the biosphere within these habitats. In the last few years, numerous novel bioactive compounds or secondary metabolites from marine environments have been described. This is, and will be, a promising source of candidate compounds in pharma research and chemical biology. In recent years, a number of novel techniques have been introduced to the field and it has become easier to actually (bio-)prospect compounds such as enzyme inhibitors. Those novel compounds then need to be characterized and evaluated in comparison to well-known representatives. This Special Issue focuses on the description of novel enzyme inhibitors of marine origin, including bioprospecting, omic approaches, and structural and mechanistic aspects.
sponge Monanchora pulchra --- pentacyclic guanidine alkaloids --- GH36 α-galactosidase --- GH109 α-N-acetylgalactosaminidase --- slow-binding irreversible inhibitor --- monanchomycalin B --- monanhocidin A --- normonanhocidin A --- Alzheimer′s disease --- BACE1 --- acetylcholinesterase --- in silico docking --- phlorotannins --- Ulva intestinalis --- ACE inhibitory peptide --- optimization --- purification --- structural identification --- molecular docking --- secondary metabolites --- Mycosphaerella sp. --- asperchalasine --- α-glucosidase --- kinase inhibitors --- drug development --- marine natural products --- inhibitor --- macroalgae --- marine fish --- protease --- Ulva ohnoi --- functional annotation --- structure–function relation --- natural products --- bioactives --- enzyme inhibition --- inactivation --- marine bacteria --- marine fungi --- marine sponges
Choose an application
The discovery of new drugs is one of pharmaceutical research's most exciting and challenging tasks. Unfortunately, the conventional drug discovery procedure is chronophagous and seldom successful; furthermore, new drugs are needed to address our clinical challenges (e.g., new antibiotics, new anticancer drugs, new antivirals).Within this framework, drug repositioning—finding new pharmacodynamic properties for already approved drugs—becomes a worthy drug discovery strategy.Recent drug discovery techniques combine traditional tools with in silico strategies to identify previously unaccounted properties for drugs already in use. Indeed, big data exploration techniques capitalize on the ever-growing knowledge of drugs' structural and physicochemical properties, drug–target and drug–drug interactions, advances in human biochemistry, and the latest molecular and cellular biology discoveries.Following this new and exciting trend, this book is a collection of papers introducing innovative computational methods to identify potential candidates for drug repositioning. Thus, the papers in the Special Issue In Silico Strategies for Prospective Drug Repositionings introduce a wide array of in silico strategies such as complex network analysis, big data, machine learning, molecular docking, molecular dynamics simulation, and QSAR; these strategies target diverse diseases and medical conditions: COVID-19 and post-COVID-19 pulmonary fibrosis, non-small lung cancer, multiple sclerosis, toxoplasmosis, psychiatric disorders, or skin conditions.
Medicine --- Pharmaceutical industries --- COVID-19 --- drug repurposing --- topological data analysis --- persistent Betti function --- SARS-CoV-2 --- network-based pharmacology --- combination therapy --- nucleoside GS-441524 --- fluoxetine --- synergy --- antidepressant --- natural compounds --- QSAR --- molecular docking --- drug repositioning --- UK Biobank --- vaccine --- LC-2/ad cell line --- drug discovery --- docking --- MM-GBSA calculation --- molecular dynamics --- cytotoxicity assay --- GWAS --- multiple sclerosis --- oxidative stress --- repurposing --- ADME-Tox --- bioinformatics --- complex network analysis --- modularity clustering --- ATC code --- hidradenitis suppurativa --- acne inversa --- transcriptome --- proteome --- comorbid disorder --- biomarker --- signaling pathway --- druggable gene --- drug-repositioning --- MEK inhibitor --- MM/GBSA --- Glide docking --- MD simulation --- MM/PBSA --- single-cell RNA sequencing --- pulmonary fibrosis --- biological networks --- p38α MAPK --- allosteric inhibitors --- in silico screening --- computer-aided drug discovery --- network analysis --- psychiatric disorders --- medications --- psychiatry --- mental disorders --- toxoplasmosis --- Toxoplasma gondii --- in vitro screening --- drug targets --- drug-disease interaction --- target-disease interaction --- DPP4 inhibitors --- lipid rafts
Choose an application
A major source of active compounds, natural products from different sources supply a large variety of molecules that have been approved for clinical use or used as the starting points of optimization programs. This book features nine papers (eight full articles and one review paper) written by more than 45 scientists from around the world. These papers illustrate the development and application of a broad range of computational and experimental techniques applied to natural product research. On behalf of the contributors to the book, our hope is that the research presented here contributes to advancements in the field, and encourages multidisciplinary teams, young scientists, and students to further advance in the discovery of pharmacologically-active natural compounds
n/a --- immunoproteasome --- ginsenoside F1 --- visualization --- chemoinformatics --- soil microorganism --- molecular diversity --- web service --- epigenetics --- bioinsecticides --- Tibetan Plateau --- nanoparticles --- Py-GC/MS --- drug discovery --- consensus diversity plot --- chemical data set --- molecular interactions --- curcumin --- similarity maps --- Alzheimer’s disease --- proteasome inhibitors --- cyclodextrin glycosyltransferase (CGTase) --- classification --- squalene --- docking --- molecular docking --- cholestasis --- protein aggregation --- brain diseases --- structure–activity relationship --- flavonoids --- molecular fingerprints --- cyclodextrin glycosyltransferase --- random forest --- multitarget --- natural products --- inflammation --- natural product-likeness --- chemical space --- epi-informatics --- molecular dynamics --- machine learning --- systematic review --- phenylethanoid glycosides --- ?-glucosyl ginsenoside F1 --- alpine grassland --- Calceolaria --- marine diterpenoid --- Parkinson’s disease --- Alzheimer's disease --- structure-activity relationship --- Parkinson's disease
Choose an application
This book describes the recent advances in natural product chemistry and biodiversity in the Red Sea. All previous marine natural products isolated from different Red Sea organisms and microbes were collected in a comprehensive review. Additionally, newly discovered marine natural products and their biological activities are described.
Aspergillus falconensis --- OSMAC --- azaphilones --- X-ray diffraction --- NF-κB inhibition --- LC-HRESIMS --- Stylissa carteri --- ceramide --- cerebroside --- docking --- cytotoxic activity --- co-cultivation --- phenazine --- sponge-associated actinomycetes --- antibacterial --- antibiofilm --- DNA gyrase --- pyruvate kinase --- ergosterol derivative --- metabolic analysis --- docking studies --- seagrass --- Thalassodendron ciliatum --- Red Sea sponges --- marine actinomycetes --- Streptomyces coelicolor LY001 --- halogenated 3-phenylpropanoic acid derivatives --- diketopiperazine alkaloids --- structural determinations --- antimicrobial activities --- Red Sea --- marine natural products --- marine organisms --- biodiversity --- marine metagenomics --- bioactivity --- Sinularia polydactyla --- soft coral --- steroids --- cytotoxic --- anti-inflammatory --- neuroprotective --- androgen receptor --- Actinokineospora --- Rhodococcus --- co-culture --- metabolomics --- antimalarial --- epicotripeptin --- phragamide --- Epicoccum --- Alternaria --- antimicrobial --- n/a
Choose an application
This collection of 10 papers includes original as well as review articles focused on the cholinesterase structural aspects, drug design and development of novel cholinesterase ligands, but also contains papers focused on the natural compounds and their effect on the cholinergic system and unexplored effects of donepezil.
Amaryllidaceae --- Narcissus pseudonarcissus cv. Carlton --- alkaloids --- carltonine A–C --- Alzheimer’s disease --- butyrylcholinesterase --- docking studies --- organophosphorus nerve agents --- oxime --- cholinesterase --- reactivation --- ventilation --- pharmacodynamics --- blood-brain barrier crossing --- acetylcholinesterase inhibitors --- bone healing --- osseointegration --- donepezil --- hemostasis --- acetylcholinesterase inhibitor --- dementia --- zebrafish --- behavior --- Alzheimer disease --- antioxidants --- butyrylcholinesterase inhibitors --- molecular modelling --- nutraceuticals --- phytochemicals --- acetylcholinesterase --- slow-binding inhibition --- transition state analog --- organophosphorus --- osmotic stress --- neutron scattering --- molecular dynamics --- MD simulations --- fluorene --- in vitro --- in silico --- multi-target directed ligands --- N-methyl-d-aspartate receptor --- molecular modeling --- reactivators --- reactivation process --- organophosphates --- docking --- hydrolysis --- molecular recognition --- catalysis --- inhibition --- n/a --- carltonine A-C --- Alzheimer's disease
Choose an application
Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.
pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50
Choose an application
This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.
3D-QSAR --- pharmacophore modeling --- ligand-based model --- HDACs --- isoform-selective histone deacetylase inhibitors --- aminophenylbenzamide --- hERG toxicity --- drug discovery --- fingerprints --- machine learning --- deep learning --- gene expression signature --- drug repositioning approaches --- RNA expression regulation --- high-throughput virtual screening --- dual-target lead discovery --- neurodegenerative disorders --- Alzheimer’s disease --- dual mode of action --- multi-modal --- nicotinic acetylcholine receptor --- acetylcholinesterase --- molecular docking --- methotrexate --- drug resistance --- human dihydrofolate reductase --- virtual screening --- molecular dynamics simulation. --- epitope binning --- epitope mapping --- epitope prediction --- antibody:antigen interactions --- protein docking --- glycoprotein D (gD) --- herpes simplex virus fusion proteins --- Src inhibitors --- pharmacophore model --- molecular dynamics simulations --- in silico --- COX-2 inhibitors --- molecular modeling --- sodium–glucose co-transporters 2 --- FimH --- uropathogenic bacteria --- urinary tract infections --- diabetes --- drug-resistance mutations --- HIV-2 protease --- structural characterization --- induced structural deformations --- SARS-CoV-2 --- COVID-19 --- multiprotein inhibiting natural compounds --- MD simulation --- 3CL-Pro --- antivirals --- docking simulations --- drug repurposing --- consensus models --- binding space --- isomeric space --- MRP4 --- SNPs --- variants --- protein threading modeling --- molecular dynamics --- binding site --- hTSPO --- PK11195 --- cholesterol --- homology modeling --- molecular dynamics (MD) simulation --- carbon nanotubes --- Stone–Wales defects --- haeckelite defects --- doxorubicin encapsulation --- drug delivery system --- binding free energies --- noncovalent interactions --- main protease --- mutants --- inhibitors --- PF-00835231 --- Mycobacterium tuberculosis --- tuberculosis --- proteasome --- natural compounds --- multiscale --- multitargeting --- polypharmacology --- computational biology --- drug repositioning --- structural bioinformatics --- proteomic signature --- skin aging --- oxidative stress --- aging progression mechanism --- genome-wide genetic and epigenetic network (GWGEN) --- systems medicine design --- multiple-molecule drug --- immunoproteasome --- non-covalent inhibitors --- MD binding --- metadynamics --- induced-fit docking --- n/a --- Alzheimer's disease --- sodium-glucose co-transporters 2 --- Stone-Wales defects
Listing 1 - 10 of 65 | << page >> |
Sort by
|