Narrow your search

Library

FARO (13)

KU Leuven (13)

LUCA School of Arts (13)

Odisee (13)

Thomas More Kempen (13)

Thomas More Mechelen (13)

UCLL (13)

VIVES (13)

Vlaams Parlement (13)

UGent (5)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2022 (4)

2021 (3)

2020 (3)

2019 (3)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Phylogenomic, Biogeographic, and Evolutionary Research Trends in Arachnology
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on systematics, biogeography, and evolution of arachnids, a group of ancient chelicerate lineages that have taken on terrestrial lifestyles. The book opens with the questions of what arachnology represents, and where the field should go in the future. Twelve original contributions then dissect the current state-of-the-art in arachnological research. These papers provide innovative phylogenomic, evolutionary and biogeographic analyses and interpretations of new data and/or synthesize our knowledge to offer new directions for the future of arachnology.


Book
Siloxane-Based Polymers
Author:
ISBN: 303897126X 3038971251 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

ceramizable silicone rubber --- halloysite --- encapsulant --- drug delivery --- fillers --- ultraviolet (UV) curable coatings --- PDMS etching --- nanoparticles --- roughness --- methacryl POSS --- composite --- chlorogenic acid --- hydrophilic --- surface free energy --- theranostics --- 29Si-NMR --- borate --- dental resin --- morphology --- surface --- fabrication --- polydimethylsiloxane --- recessed electrode --- swelling --- MAPOSS --- X-ray (Micro-CT) microtomography --- mechanical properties --- plateau-shaped electrode --- hybrid hydrogel --- hardness --- sugar templating process --- bioactivity --- amphiphilic --- high molecular weight --- low surface energy materials --- PDMS --- quartz microcrystal --- 3D porous network --- fluorinated siloxane resin --- mortar --- surface modification --- poly(dimethylsiloxanes) --- scratch resistance --- multielectrode array (MEA) --- non-releasable --- sol-gel --- topology of polysiloxane chains --- cross-linking --- FTIR --- diethyl carbonate --- poly(ethylene glycol) (PEG) --- TG-FTIR --- organosilane --- anti-bioadhesion --- carbon content --- nanomedicine --- thermal stability --- hybrids --- underexposure --- nanosilica --- hyperbranched poly(methylhydrosiloxanes) --- spinal cord signal recording --- ceramizable mechanism --- coatings --- TG --- silicon --- polysiloxanes --- basalt fibre --- refractive index --- drug release --- thermal conductivity --- hydrolytic polycondensation --- shrinkage --- polyhedral oligomeric silsesquioxanes


Book
Biomaterials for Bone Tissue Engineering 2020
Authors: ---
ISBN: 303656103X 3036561048 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents recent advances in the field of bone tissue engineering, including molecular insights, innovative biomaterials with regenerative properties (e.g., osteoinduction and osteoconduction), and physical stimuli to enhance bone regeneration.


Book
Natural Fibres and their Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.


Book
Cast Irons : Properties and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for cast iron components, with weights ranging from a few kilograms to several tons, has increased significantly in recent years, both for technical and economic reasons. In fact, the lower cost compared to other alloys, and the good castability, which allow one to obtain near-net shape components in as-cast conditions, and the mechanical properties that can be obtained, are just some of the motivations that attract mechanical designers. However, correct design requires a good knowledge of the intrinsic correlation among alloy chemical composition, process parameters, microstructure (with casting defects) and mechanical properties. This book is aimed at collecting excellent and recent research experimental and theoretical works in this filed. Technological (say, wear resistance and weldability) and mechanical properties (say, Young modulus, static and fatigue strength) of different grades of cast irons, ranging from solution strengthened ferritic ductile iron to compacted graphite iron as well as white and nodular cast irons, are correlated with the alloy chemical composition, process parameters and casting dimension.


Book
Progress of Fiber-Reinforced Composites : Design and Applications
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled “Progress of Fiber-Reinforced Composites: Design and Applications” has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences.


Book
The State of the Art in Endodontics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, we use the term “modern endodontics” thanks to new technologies, novel materials, and revolutionary techniques. Various equipment is available to facilitate and improve our endodontic treatments, such as operating microscopes, ultrasounds, lasers, modern alloys for rotary files, powerful irrigation systems, new materials for filling root canals, 3D radiology, and several more. With the aid of the previously mentioned advances, complex endodontic treatments can be carried out safely, hence guaranteeing patients a high level of care and, above all, saving teeth that would otherwise be doomed for extraction. General practitioners and, even more importantly, specialists in endodontics should implement these modern technologies in their practice. This Special Issue will focus on modern endodontics regarding all the recent updates. Full papers of original articles, short communications, and review articles are all invited.

Keywords

meta-analysis --- root canal filling --- postoperative pain --- bioceramic sealer --- analgesic intake --- flare-up --- endodontics --- cyclic fatigue --- cross-section design --- NiTi --- continuous rotation --- energy-dispersive X-ray --- apical plug --- BioRoot RCS --- micro-computed tomography --- MTA Flow --- porosity --- root perforation --- single cone --- ultrasonic --- endodontic rotary files --- finite element analysis --- fatigue analysis --- pediatric dentistry --- oral health --- dental medicine --- systematic review --- umbrella review --- endodontic reciprocating file --- micro-computed tomography scan --- root canal dentin removal --- primary molar teeth --- pulpotomy --- pulpitis --- toothache --- treatment outcome --- tricalcium silicate --- accuracy --- computed-assisted template --- computer-aided static navigation --- cone-beam computed tomography scan --- digital impression --- tooth autotransplantation --- endodontic surgery --- periapical lesion --- guided tissue regeneration --- bone graft --- membrane --- platelet rich fibrin --- nanodroplets --- confocal laser microscope --- benzalkonium chloride --- chlorhexidine --- sodium hypochlorite --- viability staining --- dental anatomy --- dental pulp --- dental diagnostic imaging --- morphology --- Micro-CT --- root --- root canal --- n/a --- endodontic file --- cross-section --- pitch --- flexural bending --- torsion --- stress distribution --- endodontic rotary file --- reciprocating --- speed --- resistance --- apexification --- endodontic therapy --- immature permanent tooth --- pulp --- regeneration


Book
Cement-Based Composites : Advancements in Development and Characterization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Cement-Based Composites: Advancements in Development and Characterization” presents the latest research and advances in the field of cement-based composites. This Special Issue covers a variety of experimental studies related to fiber-reinforced, photocatalytic, lightweight, and sustainable cement-based composites. Moreover, simulation studies are presented in this Special Issue to provide fundamental knowledge of designing and optimizing the properties of cementitious composites. The presented publications in this Special Issue show the most recent technology in the cement-based composite field.


Book
In-Situ X-Ray Tomographic Study of Materials
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book illustrates the exciting possibilities being opened up by X-ray computed tomography (CT) to follow the behavior of materials under conditions as close as possible to those encountered during their manufacture or in operation.The scientific chapters selected for this book describe results obtained using synchrotron or laboratory devices during in situ or ex situ experiments. They characterize microstructures across length scales ranging from tens of nanometers to a few tens of micrometers.In this collection, X-ray CT shines a light on the mechanical properties of engineering materials, such as aluminum or magnesium alloys, stainless steel, aluminum, polymer composites, or ceramic foam. In these experiments, X-ray CT is able to image and quantify the damage occurring during tensile, compression, indentation, or fatigue tests.Of course, X-ray CT can illuminate the structure and behavior of natural materials too. Here it is applied to bone or natural snow to study their mechanical behavior, as well as materials from the agri-food sector. Its versatility is exemplified by analyses of topics as diverse as the removal of olive oil from kitchen sponges by squeezing and rinsing, to the effect of temperature changes on the structure of ice cream.

Keywords

in-situ X-ray computed tomography --- thermal-mechanical loading --- polymer bonded explosives --- mesoscale characterization --- structure evolution --- particle morphology --- heat treatment --- aluminum cast alloy --- mechanical properties --- Ostwald ripening --- nanotomography --- phase-contrast imaging --- tomographic reconstruction --- dynamic tomography --- motion compensation --- projection-based digital volume correlation --- X-ray μCT --- in-situ experiments --- flow cell --- alkaline manganese batteries --- X-ray tomography --- in operando --- in situ --- zinc powder --- laser powder bed fusion --- additive manufacturing --- in-situ imaging --- Ti6Al4V --- lattice structures --- mechanics --- corrosion --- biomaterial --- battery --- aluminum foams --- intermetallics --- finite element analysis --- damage --- polycrystal plasticity --- X-ray diffraction imaging --- topotomography --- in situ experiment --- finite element simulation --- lattice curvature --- rocking curve --- ice cream --- microstructure --- tomography --- ice crystals --- coarsening --- soft solids --- bone --- X-ray radiation --- tissue damage --- SR-microCT --- digital volume correlation --- temperature control --- electrochemical cell design --- batteries --- helical CT --- contrast agent --- high cycle fatigue (HCF) --- fibre break --- fibre tows --- Freeze Foaming --- in situ computed tomography --- non-destructive testing --- bioceramics --- aging --- crack initiation and propagation --- damage modes --- osteoporosis --- osteogenesis imperfecta --- porosity --- bone matrix quality --- micro-CT --- snow grains --- snow microstructure --- snow properties --- pore morphology --- voids --- fiber-reinforced concrete --- CT scan technology --- DIP software --- X-ray tomography (X-ray CT) --- 3D image analysis --- hydrogen embrittlement --- stainless steel


Book
Development of Unconventional Reservoirs
Author:
ISBN: 3039285815 3039285807 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Keywords

horizontal well --- shale gas --- shock loads --- pseudo-steady-state non-equilibrium sorption --- unsteady state non-equilibrium sorption --- porosity–permeability --- fractured-vuggy reservoirs --- flow channel --- pressure derivative --- total organic carbon (TOC) --- CO2 huff-n-puff --- flow behavior --- unconventional reservoirs --- semi-analytical model --- gravel pack --- optimization measures --- fractures --- lab tests under reservoir condition --- dual-porosity system --- unconventional --- gravity differentiation --- MICP --- perforation safety --- fracture penetration extent --- organic-rich shale --- stress-dependent permeability --- equilibrium sorption --- helium porosimetry --- numerical model --- original gas in-place --- shale alteration --- injection and production pattern --- adsorption and desorption isotherms --- low-pressure gas adsorption --- initial water saturation --- drilling fluid --- sorption hysteresis --- coalbed methane --- gas content --- capillary number --- reorientation fractures --- water flooding effect --- organic pores --- tight reservoir --- condensate recovery --- Langmuir pressure --- Klinkenberg slippage theory --- limestone and calcareous mudstone interbedding --- petrophysics --- tight gas sand --- numerical analysis --- northern Guizhou --- wettability --- peak pressure --- sand control --- water imbibition --- clay bound water --- carbon dioxide sequestration --- adsorption capacity --- gas compressibility factors --- convolutional neural network --- multi-stage fracturing horizontal wells --- fractured tight reservoir --- physical model --- tight gas reservoirs --- automatic classification --- NMR --- catalytic oxidation characteristics --- micro-CT image --- wellbore stability --- gas adsorption and desorption --- gas shale --- medium volatile bituminous coal --- hydraulic flow units --- GEM® --- petrophysical properties --- compositional 3D --- rock-water-CO2 interaction --- source-mixed gas --- residual gas distribution --- oxidation reaction pathway --- coal rank --- oil migration --- clay content --- perforated string --- TOC recovery --- Computer Modelling Group (CMG) --- capillary trapping --- pore size distribution --- adsorption --- tight reservoirs --- well interference --- gradation optimization --- shale gas condensate reservoir --- Niutitang formation --- pulse decay test --- well testing --- Langmuir model --- methane adsorption capacity --- pore structure --- and tight sand gas) --- ultra-deep well --- deepwater well --- orthogonal test --- high pressure and low flowrate --- theoretical model --- safety analysis --- transient pressure --- catalyst-activated low temperature oxidation --- reservoir simulation --- Langmuir volume --- air flooding --- petrography --- total organic carbon --- electrical resistivity --- diffusion coefficient --- equation of state --- porosity --- zeta potential --- gas permeability measurement --- co-exploitation --- nuclear magnetic resonance --- Changqing tight oil --- visual experiment --- tight oil reservoirs --- caprock integrity --- coal measure gases (coalbed gas --- NIST-Refprop

Listing 1 - 10 of 13 << page
of 2
>>
Sort by