Listing 1 - 10 of 920 | << page >> |
Sort by
|
Choose an application
The study of Lefschetz properties for Artinian algebras was motivated by the Lefschetz theory for projective manifolds. Recent developments have demonstrated important cases of the Lefschetz property beyond the original geometric settings, such as Coxeter groups or matroids. Furthermore, there are connections to other branches of mathematics, for example, commutative algebra, algebraic topology, and combinatorics. Important results in this area have been obtained by finding unexpected connections between apparently different topics. A conference in Cortona, Italy in September 2022 brought together researchers discussing recent developments and working on new problems related to the Lefschetz properties. The book will feature surveys on several aspects of the theory as well as articles on new results and open problems.
Choose an application
Choose an application
Choose an application
"PREFACE This book is intended for a 2-semester first course in algebraic topology, though I would recommend not to try to cover the whole thing in two semesters. A glance through the contents page will tell the reader that the selection of topics is quite standard whereas the sequencing of them may not be so. The material in the first five chapters are very basic and quite enough for a semester course. A teacher can afford to be a little choosy in selecting exactly which sections (s)he may want to teach. There is more freedom in choice of materials to be taught from latter chapters. It goes without saying that these materials demand much higher mathematical maturity than the first five chapters. Also, this is where some knowledge of differential manifolds helps to understand the material better. The book can be adopted as a text for M.Sc./B.Tech./M.Tech./Ph.D. students. We assume that the readers of this book have gone through a semester course each in real analysis, and point-set-topology and some basic algebra. It is desirable that they also had a course in differential topology or concurrently study such a course but that is necessary only at a few sections. There are exercises at the end of many sections and at the end of first five chapters. Most of these exercises are part of the main material and working through them is an essential part of learning. However, it is not necessary that a student gets the right answers before proceeding further. Indeed, it is not a good idea to get stuck with a problem for too long--keep going further and come back to them later. There is a hint/solution manual for them at the end of the book for some selected exercises, especially for those which are being used in a later section, so as to make"-- "Thoroughly classroom-tested, this self-contained text teaches algebraic topology to students at the MSc and PhD levels, taking them all the way to becoming algebraic topologists. Requiring basic training in point set topology, linear algebra, and group theory, the book includes historical remarks to make the subject more meaningful to students. Also suitable for researchers, it provides references for further reading, presents full proofs of all results, and includes numerous exercises"--
Choose an application
Choose an application
Algebraic topology --- Congresses. --- Congresses --- Algebraic topology - Congresses
Choose an application
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes challenging, for the reader to provoke their curiosity for problem-solving.
Mathematics. --- Algebraic topology. --- Algebraic Topology. --- Topology
Choose an application
"Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory"--
Algebraic topology --- Topology --- Algebraic topology. --- Topologie algébrique
Choose an application
This monograph covers topics in the cohomology of monoids up through recent developments. Jonathan Leech’s original monograph in the Memoirs of the American Mathematical Society dates back to 1975. This book is an organized, accessible, and self-contained account of this cohomology that includes more recent significant developments that were previously scattered among various publications, along with completely new material. It summarizes the original Leech theory and provides a modern and thorough treatment of the cohomological classification of coextensions of both monoids and monoidal groupoids, including the case of monoids with operators. This cohomology is also compared to the classical Eilenberg-Mac Lane and Hochschild-Mitchell cohomologies. Connections are also established with the Lausch-Loganathan cohomology theory for inverse semigroups, the Gabriel-Zisman cohomology of simplicial sets, the Wells cohomology of small categories (also known as Baues-Wirsching cohomology), Grothendieck sheaf cohomology, and finally Beck’s triple cohomology. It also establishes connections with Grillet’s cohomology theory for commutative semigroups. The monograph is aimed at researchers in the theory of monoids, or even semigroups, and its interface with category theory, homological algebra, and related fields. However, it is also written to be accessible to graduate students in mathematics and mathematicians in general.
Algebra. --- Algebraic topology. --- Geometry. --- Topology. --- Algebraic Topology.
Choose an application
Listing 1 - 10 of 920 | << page >> |
Sort by
|