Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This book has been written with the purpose of providing a vision of a topic which is on the edge of biology and chemistry. As well, we want to provide an updated vision of the potentials and limitations of biocatalysis, especially with respect to applications in processes of organic synthesis, fine chemicals, and medicine. This book pretends to illustrate the potential of an excellent overview of recent progress on the assessment of granted patents as a useful tool in asymmetric synthesis. Some distinguished researchers have contributed to this endeavor with their knowledge, their commitment and their encouragement
ferulic acid esters --- octyl ferulate --- esterification --- Box-Behnken design --- response surface methodology --- molar conversion --- optimum condition --- Bacillus --- glycosyltransferase --- 8-hydroxydaidzein --- industrial biotechnology --- electrochemistry --- biohydrogen --- biocatalysis --- process development --- bacteria --- Enantioselectivity --- enzyme cascade --- hydroxynitrile lyase --- lipase --- hydrocyanation --- transesterification --- glycosidases --- transglycosylation --- cyclodextrin glycosyltransferases --- alkyl glucosides --- biosurfactants --- MDR—medium-chain reductase/dehydrogenase --- ADH—alcohol dehydrogenase --- enzyme kinetics --- EDTA (Ethylenediaminetetraacetic acid) chelation --- ultrafiltration --- pseudokinases --- signal transduction --- cancer therapy --- tyrosine/serine/threonine phosphorylation --- new drug targets --- interactome --- asymmetric synthesis --- patents --- lipases --- oxidoreductases --- lyases --- transaminases --- n/a --- MDR-medium-chain reductase/dehydrogenase --- ADH-alcohol dehydrogenase
Choose an application
This book is a collection of studies focused on the exploitation of enzyme stereoselectivity for the synthesis of relevant chemicals, such as innovative materials, chiral building blocks, natural products, and flavor and fragrance compounds. Different catalytic approaches are reported. The first study describes a resolution-based process for the stereoselective synthesis of the enantiomeric forms of the flavor compound linaloyl oxide, whereas other enantiomeric enriched aroma compounds were obtained through a novel microbial approach based on solid-state fermentation. Two relevant works exploit the potential of the biocatalyzed reduction reactions. The first of these contributions describes the enantioselective synthesis of ?-nitroalcohols by enzyme-mediated reduction of ?-nitroketones, whereas a second contribution reports the preparation of chiral 1,4-diaryl-1,4-diols through ADH-catalyzed bioreduction of the corresponding diketones. Concerning enantioenriched alcohol derivatives, natural hydroxy fatty acids are prepared by means of the biocatalytic hydration reaction of natural fatty acids using the probiotic bacterium Lactobacillus rhamnosus as a whole-cell biocatalyst. Further studies describe the use of modified pullulan polysaccharide for lipase immobilization and the recent advances in synthetic applications of ?-transaminases for the production of chiral amines.
enantioselective synthesis --- flavors --- n/a --- hydroxy fatty acids --- chiral amines --- diketones --- esters --- oleic acid --- Burkholderia cepacia lipase --- multi-enzymatic cascades --- solid-state fermentation --- biocatalysis --- agro-industrial side stream --- rapeseed cake --- enzyme-mediated resolution --- linolenic acid --- stereoselective biotransformation --- lipases --- kinetic resolution --- 1-phenylethanol --- linseed cake --- bioreduction --- Lactobacillus rhamnosus --- alcohol-dehydrogenase --- enantioselectivity --- hydratase --- reaction engineering --- immobilization --- ?-transaminases --- linoleic acid --- cyclization --- monoterpenes --- 1 --- lactones --- protein engineering --- asymmetric synthesis --- alcohol dehydrogenases --- linaloyl oxide --- chiral resolution --- aroma compounds --- 4-diols --- pullulan --- linalool --- reduction --- nitroketone
Choose an application
Proteins represent one of the most abundant classes of biological macromolecules and play crucial roles in a vast array of physiological and pathological processes. The knowledge of the 3D structure of a protein, as well as the possible conformational transitions occurring upon interaction with diverse ligands, are essential to fully comprehend its biological function.In addition to globular, well-folded proteins, over the past few years, intrinsically disordered proteins (IDPs) have received a lot of attention. IDPs are usually aggregation-prone and may form toxic amyloid fibers and oligomers associated with several human pathologies. Peptides are smaller in size than proteins but similarly represent key elements of cells. A few peptides are able to work as tumor markers and find applications in the diagnostic and therapeutic fields. The conformational analysis of bioactive peptides is important to design novel potential drugs acting as selective modulators of specific receptors or enzymes. Nevertheless, synthetic peptides reproducing different protein fragments have frequently been implemented as model systems in folding studies relying on structural investigations in water and/or other environments.This book contains contributions (seven original research articles and five reviews published in the journal Molecules) on the above-described topics and, in detail, it includes structural studies on globular folded proteins, IDPs and bioactive peptides. These works were conducted usingdifferent experimental methods.
mass spectrometric epitope mapping --- gas phase immune complex dissociation --- apparent gas phase dissociation constants --- apparent gas phase activation energies --- ITEM-TWO --- native mass spectrometry --- TRIOBP --- cancer --- deafness --- hearing loss --- mental illness --- schizophrenia --- actin --- cytoskeleton --- disordered structure --- protein aggregation --- solid-state NMR --- ELDOR-detected NMR --- ATP hydrolysis --- ATP analogues --- DnaB helicase --- ABC transporter --- biopesticides --- antifungal activity --- insecticidal activity --- mechanism of action --- transgenic crops --- protein folding --- NMR --- High Hydrostatic Pressure --- ACE2 --- viral spike receptor-binding domain --- SARS-CoV-2 --- transmission --- bioinformatics --- IDP 1 --- binding 2 --- molecular dynamics 3 --- MELD×MD 4 --- advanced sampling 5 --- p53 6 --- MDM2 7 --- NAD(P)H-dependent oxidoreductase --- zinc-containing alcohol dehydrogenase --- cofactor binding and release --- interdomain cleft dynamics --- molecular dynamics simulations --- denatured state ensemble --- protein coil library --- peptides --- intrinsically disordered proteins --- ion-pairing interaction --- side-chain length --- charged amino acids --- β-hairpin --- peptide --- Friedman’s test --- backbone atom coordinate variances and uncertainties --- superimposition --- nanobody --- protein structure --- immunoglobulin domain --- n/a --- Friedman's test
Choose an application
This book discusses biochemical adaptation to environments from freezing polar oceans to boiling hot springs, and under hydrostatic pressures up to 1,000 times that at sea level.Originally published in 1984.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Adaptation (Physiology) --- Biochemistry. --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Compensation (Physiology) --- Plasticity (Physiology) --- Composition --- Biology --- Chemistry --- Medical sciences --- Ecophysiology --- Biochemistry --- 57.017.32 --- 575.826 --- 575.826 Adaptation --- Adaptation --- Biologische wetenschappen in het algemeen. Biologie--?.017.32 --- 6-bisphosphatase. --- ATPase. --- Acid–base homeostasis. --- Adenosine monophosphate. --- Alanine. --- Alcohol dehydrogenase. --- Amino acid. --- Aminooxyacetic acid. --- Anabolism. --- Anaerobic glycolysis. --- Antifreeze. --- Arginine. --- Basal rate. --- Beta oxidation. --- Bohr effect. --- Carbohydrate. --- Carnitine. --- Catabolism. --- Catalase. --- Catalysis. --- Cellular respiration. --- Cofactor (biochemistry). --- Competitive inhibition. --- Cooperativity. --- Deep sea. --- Dehydrogenase. --- Detergent. --- Dissociation constant. --- Enzyme Repression. --- Enzyme inhibitor. --- Enzyme. --- Facultative anaerobic organism. --- Fatty acid. --- Fermentation. --- Flavin adenine dinucleotide. --- Fructose 1. --- Futile cycle. --- Glucagon. --- Gluconeogenesis. --- Glucose-6-phosphate dehydrogenase. --- Glucose. --- Glyceraldehyde 3-phosphate dehydrogenase. --- Glycerol. --- Glycogen phosphorylase. --- Glycogen. --- Glycogenolysis. --- Glycolysis. --- Hemoglobin. --- Hibernation. --- High-energy phosphate. --- Hill equation (biochemistry). --- Histidine. --- Hofmeister series. --- Hormone-sensitive lipase. --- Insulin. --- Isozyme. --- Ketosis. --- Lactic acid. --- Lipid. --- Lipolysis. --- Lysine. --- Mammalian diving reflex. --- Metabolic intermediate. --- Metabolism. --- Michaelis–Menten kinetics. --- Mitochondrial matrix. --- Mitochondrion. --- Molecular mimicry. --- Muscle. --- Nicotinamide adenine dinucleotide. --- Obligate anaerobe. --- Obligate. --- Organism. --- Ornithine. --- Osmolyte. --- Oxidative deamination. --- Peroxidase. --- Phosphagen. --- Phosphofructokinase. --- Phospholipid. --- Phosphorylase kinase. --- Proline. --- Proofreading (biology). --- Protein turnover. --- Protein. --- Proteolysis. --- Pyruvate carboxylase. --- Pyruvic acid. --- Redox. --- Regulatory enzyme. --- Root effect. --- Substrate-level phosphorylation. --- Thermoregulation. --- Thermus aquaticus. --- Thermus thermophilus. --- Triglyceride. --- Tryptophan. --- Turnover number. --- Urea cycle. --- Urea.
Listing 1 - 4 of 4 |
Sort by
|