Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book describes unconventional noncovalent interactions and analyzes their importance for crystal growth in organic and hybrid organic–inorganic systems. Several examples illustrate how the combination of theory and experiment allows rationalizing the strength and directionality of noncovalent interactions. This book elegantly describes the results of a survey of X-ray structures of main group element compounds (M = Sn, Pb As, Sb, Bi, and Te) exhibiting intermolecular M•••Se noncovalent interactions in one of its chapters. Moreover, it provides a consistent description of noncovalent interactions, covering most groups of the periodic table. The interactions are described and discussed using their trivial names. That is, a comprehensive and accurate description is provided for alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen bonding interactions. No other book is available covering such an extensive number of interactions and examples where these interactions are relevant. relevant.
non-covalent interactions --- regium bonds --- silver(I) --- coinage metals --- pyrazolates --- phosphines --- halogen bonding --- hydrogen bonding sigma-hole interactions --- theoretical studies --- characterizations --- noncovalent interactions --- Lewis acids --- Lewis bases --- spodium bonds --- σ/π-hole interactions --- EDTA --- 2,6-diaminopurine --- cadmium --- co-crystal --- H-bonding --- π–π stacking --- triazinane --- 1,3,5-Triazacyclohexane --- Hirshfeld surface analysis --- DFT study --- C–H···π interaction --- hybridization of a nitrogen atom in sulfonamides --- molecular cocrystal --- sandwiched-layer structure --- C–I···F halogen bonds --- π···π stacking interactions --- PBE0-D3(BJ) calculations --- secondary bonding --- supramolecular --- crystal engineering --- tetrel bonding --- pnictogen bonding --- chalcogen bonding --- selenium --- structural chemistry --- main group elements --- π–hole interaction --- substituent effects --- vibrational spectroscopy --- local vibrational mode theory --- direct measure for π–hole interaction strength --- noncovalent interaction --- hydrogen bonding --- nickel --- Schiff bases --- crystallography --- σ-hole --- π-hole --- crystal growth --- supramolecular chemistry --- σ-hole interactions --- self-assembly --- scanning tunneling microscopy
Choose an application
Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development.
dopamine --- uric acid --- MnO2 nanoflowers --- N-doped reduced graphene oxide --- voltammetric sensor --- 3D printing --- biomimetic sensor --- flexible electronics --- graphene --- PDMS --- gauge factor --- carbon nanofibers --- nanoparticles --- electrospinning --- hybrid nanomaterials --- sensor --- carbon dots --- dipicolinic acid --- Tb3+ --- schizochytrium --- ratiometric fluorescence nanoprobe --- carbon-based nanomaterials --- chemo- and biosensor --- food safety --- field effect transistor --- graphene nanoribbon --- propane --- butane --- gas sensor --- detector --- oxygen --- humidity --- water --- nitrogen --- carbon dioxide --- surface-enhanced Raman scattering --- ultrathin gold films --- spectroscopic ellipsometry --- percolation threshold --- nano carbon black --- polydimethylsiloxane --- pressure sensors --- wearable electronics --- hemoglobin determination --- luminescence --- room temperature phosphorescence --- portable instrumentation --- sensors and biosensors --- carbon nanomaterials --- environment --- aquatic fauna --- waters --- carbon nanotubes --- zirconia nanoparticles --- Prussian blue --- electrochemical sensors --- metal organic framework --- active carbon --- heavy metal --- low-cost adsorbents --- lead sensor --- Cortaderia selloana --- non-covalent --- biosensor --- real-time --- nanocomposite --- π-π stacking --- drop-cast --- carbon-surfaces --- resistor --- GFET --- n/a
Listing 1 - 2 of 2 |
Sort by
|