Narrow your search

Library

KU Leuven (3)

UAntwerpen (2)

UCLouvain (2)

UGent (2)

ULiège (2)

UNamur (2)

UHasselt (1)

ULB (1)

VUB (1)


Resource type

book (3)


Language

English (3)


Year
From To Submit

1980 (1)

1979 (1)

1976 (1)

Listing 1 - 3 of 3
Sort by

Book
Foundations of optimization
Authors: ---
ISBN: 3540076808 0387076808 3642482945 9780387076805 Year: 1976 Volume: 122 Publisher: Berlin: New York: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming.

Listing 1 - 3 of 3
Sort by