Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Developments in medical diagnostics, environmental monitoring, food safety and therapeutics require systems that make it possible to detect a wide range of molecules in a fast and easy, yet specific and sensitive manner. In light of these applications and driven by this demand, the field of biosensing has demonstrated huge potential. In spite of this potential, continuous improvements beyond the state of the art are necessary to help overcome remaining challenges and create new opportunities. Among others, the challenges can be correlated with three pivotal aspects of a biosensor: (i) the performance of the bioreceptor molecules, (ii) the nanoarchitecture of the biorecognition layer and (iii) the adequate signal generation.Although protein elements are frequently adopted as bioreceptors or signal amplifiers in biosensing applications, they often suffer from certain drawbacks related to their limited design flexibility and stability, the latter both in time and in varying assay conditions. Moreover, although highly relevant, the nanoarchitecture of the biorecognition layer (i.e. the bioreceptor positioning at the biosensing interface) is often neglected. In this context, the field of DNA-nanotechnology offers a number of solutions: (1) functional DNA nanotechnology forms an alternative for protein bioreceptors, (2) structural DNA nanotechnology can be applied to control the nanoarchitecture of the biorecognition layer and (3) dynamic DNA nanotechnology is known to enable extensive signal amplification. In this context, the goal of this dissertation was to exploit DNA nanotechnology (DNA probes and aptamers, DNA origami, DNA cascades) as a toolbox to design and develop novel DNA-based strategies for improved biosensing, with the final aim of moving towards DNA-only biosensors.
Choose an application
Single-cell analysis has emerged as a powerful tool to elucidate life science questions regarding cellular heterogeneity. In the context of single-cell proteomics, microfluidics forms a promising route to prevent sample dilution and losses during sample preparation. An important aspect of single-cell proteomics is the single-cell isolation strategy. In continuous microfluidics, a common strategy is to use a hydrodynamic trapping array of stiff microstructures to capture individual cells. In the literature, different hydrodynamic trap structures and trapping array designs have been described to capture cells or beads. However, no comparative study has been performed on the effect of these different trap and array designs on the single-cell isolation efficiency. In addition, different operational parameters such as cell concentration, flow rate and the time cells are loaded inside the trapping chamber have never been explored for the different designs. Therefore, the aim of this thesis was to study the effect of different designs and operational parameters on the single-cell isolation efficiency and to optimize this set of parameters for capturing JURKAT cells. In the first step, the JURKAT cell size distribution was evaluated to make necessary adjustments to the trap designs found in the literature. Next, through a screening experiment, it was shown that the trap geometry, as well as the lateral displacement of the traps, have a significant effect on the single-cell trapping efficiency. To further explore the effect of these parameters as well as the effect of the operational parameters, a surface response experiment was performed. With the results of this experiment, a prediction model was fitted that was able to describe the experimental data well. In the next step, the predictive model was used to find parameter conditions to optimize the single-cell isolation efficiency. Finally, the model's accuracy was assessed through a validation experiment, where two conditions were tested. On the one hand, the predictions for a less desired condition were very satisfactory when compared to the actual output. Unfortunately, for the optimal condition, the experimental data did not fall within the confidence interval of the prediction. These results show that the model does not reflect the real situation for the optimal condition well. Therefore, further experiments should be carried out to assess the accuracy of the model for various conditions and to define whether these results are related to the use of different JURKAT cell populations or to the model itself.
Choose an application
Een populatie cellen, allemaal van hetzelfde type, lijkt op het eerste gezicht homogeen te zijn. Echter, in werkelijkheid vertonen deze cellen vaak enige mate van heterogeniteit. Wanneer analyses worden uitgevoerd op basis van het gemiddelde gedrag van de cellen binnen deze populatie, kan dit de aanwezigheid van kleine en zeldzame subpopulaties verbergen en daardoor belangrijke biologische informatie missen. Zo kan het ontstaan van kleine subpopulaties aan kankercellen, die een belangrijke bijdrage kunnen hebben in de progressie van kanker of in de reactie van therapeutische interventies, onopgemerkt blijven. Daarom is het interessant deze heterogeniteit te onderzoeken op het niveau van de individuele cel. Hoewel goede technologieën beschikbaar zijn voor het bestuderen van DNA en RNA in individuele cellen, blijft de analyse van cellulaire eiwitten op dit niveau achter. Een cruciale factor die de effectiviteit van deze eiwitanalyses beïnvloedt, is de staalvoorbereiding. Hoewel methoden voor populatie-gebaseerde analyses goed zijn ontwikkeld, blijft het een uitdaging deze methoden te gebruiken voor kleinere staalhoeveelheden. Daarom is het noodzakelijk om deze methoden te integreren op geminiaturiseerde platformen. Microfluïdische platformen zijn hiervoor zeer geschikt vanwege hun vermogen om verschillende stappen in de staalvoorbereiding te integreren. Om de eiwitanalyse van kleine staalhoeveelheden mogelijk te maken, richt deze thesis zich daarom op het ontwikkelen van een microfluïdisch platform voor staalvoorbereiding. Deze thesis onderzoekt de twee hoofdmodules van het microfluïdisch platform: (i) een module voor celisolatie en lysis, en (ii) een module voor staalvoorbereiding. De celisolatie module bestaat uit een rooster van microstructuren voor het robuust isoleren van cellen, waarbij verschillende parameters zoals stroomsnelheid en celconcentratie worden bestudeerd. Cel lysis wordt vervolgens getest onder omstandigheden die compatibel zijn met verdere eiwitanalyse. Daarnaast wordt een methode onderzocht voor het monitoren en laden van eiwitten op het microfluïdisch platform. Toekomstig onderzoek zal verdere optimalisatie van de staalvoorbereiding en integratie van beide modules in één geïntegreerd platform omvatten.
Choose an application
Red blood cells, also called erythrocytes, play a crucial role in the human body by transporting oxygen to various tissues and organs and returning carbon dioxide to the lungs for excretion. Their unique biconcave shape, similar to a doughnut, is maintained by a complex cytoskeleton of proteins and molecules. In this thesis, the synthesis conditions for a building block for an artificial red blood cell cytoskeleton were optimized for use at a later stage in the cytoskeleton of synthetic red blood cells. These building blocks were created using DNA origami, a technique in which a single long DNA strand, known as a scaffold, is folded and structured using shorter DNA strands, called staples, to achieve the desired shape. The examined shape is an asterisk structure, which is designed to mimic the natural structure of the building blocks of the cytoskeleton of red blood cells. In addition, two more hexagonal structures were developed through computer simulations, expanding the range of possible designs. The optimization process focused on several parameters that influence the annealing step of DNA origami synthesis, where the scaffold and staples are assembled and bonded together using a temperature regime. By making variations to the parameters of this process, such as the temperature regime, salt concentration and scaffold-to-staple ratio, a protocol was created that resulted in a structure that resembled the intended asterisk shape. However, during the attempts to purify the obtained structures and remove excess staples, the structures were damaged in the three purification techniques tested. This indicates that further optimization of purification methods is necessary. The results of this thesis are an advance towards the development of synthetic red blood cells. This may have applications in clinical practice, in blood transfusions, so that there is no or less need for traditional blood donations. Furthermore, these synthetic erythrocytes can also be used for research into various aspects of blood cell biology and medical technology.
Listing 1 - 4 of 4 |
Sort by
|