Listing 1 - 10 of 81 | << page >> |
Sort by
|
Choose an application
Choose an application
658.286 --- 658.5 --- SP 2017-2018 --- Intern transport --- Productiebeleid --- OO Productie- en operationeel management --- OF 3 2017-2018 --- OO Operationeel management --- OO Operationeel management en havenlogistiek --- logistiek --- Physical distribution --- productiemanagement --- SP 2018-2019 --- OF 3 2018-2019 --- SP 2019-2020 --- OF 3 2019-2020 --- VP 2019-2020 --- Production management --- SP 2020-2021 --- OF 3 2020-2021 --- VP MA in de HW 2020-2021 --- OO Operationeel management en havenlogistiek (*) --- SP 2021-2022 --- OF 3 2021-2022 --- VP MA in de HW 2021-2022 --- OO Operationeel management (*) --- SP 2022-2023 --- OF 3 2022-2023 --- VP MA in de HW 2022-2023 --- OF 3 2023-2024 --- VP MA 2023-2024 --- SP 2023-2024
Choose an application
Choose an application
Choose an application
Choose an application
Since the rise of e-commerce, service expectations of customers have increased. In order to fulfill these higher expectations, more companies adopt omni-channel supply chains in which an online and physical channel are integrated. This causes an enormous complexity regarding inventory management and a good implementation is necessary to obtain a high customer service and to push down the costs. This thesis therefore examines which replenishment policy performs best in an omni-channel supply chain in terms of total cost and service level. To this extent, a simulation study is carried out in which the periodic review echelon stock (s,S), (s,Q) and (s,nQ) policies are optimized across all levels of the omni-channel supply chain together. In addition, a comparison with installation stock policies is made, in which the optimization occurs at each location separately. The cost difference with a multi-channel supply chain where the inventories of the two channels are separated, is also examined. Based on the results of the numerical study, the conclusion is threefold. First, the (s,S) and (s,nQ) policies outperform the (s,Q) policy in the modeled omni-channel supply chain. From a sensitivity analysis, it follows that cost improvements can be obtained when the fraction of the online demand is high, when the standard deviation of the demand and the unit holding cost are low and when more online demand is satisfied from the DC. Second, inventory pooling effects lower the costs and make an omni-channel setting more suitable for the (s,S) and (s,nQ) policies than a multi-channel setting. Third, installation stock policies do not perform better than echelon stock policies in an omni-channel supply chain.
Choose an application
This thesis studies a periodic review, single item lost sales model with positive lead times. A deep Q-network (DQN), a deep reinforcement learning (DRL) algorithm, is constructed and domain knowledge is added with potential-based reward shaping to boost its performance. The domain knowledge is provided by existing heuristics, namely the base-stock, restricted base-stock and constant-order policy. The performance of the DQN algorithm without domain knowledge is evaluated against DQN algorithms with added domain knowledge, the optimal policy and the following heuristics: the constant-order, base-stock and restricted base-stock policy. When comparing the DQN algorithm without added knowledge to the one with reward shaping, using the base-stock or restricted base-stock policy as a teacher improves the performance of the algorithm in all six experiments. In one experiment using a restricted base-stock as a teacher improves the optimality gap by as much as 21,37%. Looking at the performance of the DQN algorithm with reward shaping and the heuristics policies themselves, in four out of six experiments, the DQN-agent with a base-stock policy as a teacher outperforms the base-stock policy. In all experiments, using a constant order policy as a teacher results in better performance than the constant order policy. These results demonstrate the potential of reward shaping to boost the performance of DRL in a lost sales inventory management environment.
Choose an application
Deze masterproef behandelt de impact van operationele beslissing op de financiële prestaties van een onderneming. In de eerste plaats zoeken we in de literatuur een bewijs voor deze relatie. Verschillende empirische studies hebben in het verleden zowel directe als indirecte verbanden kunnen aantonen tussen operationele beslissingen (zoals supply chain integration, complexity management, specifieke operationele maatstaven en strategieën) en de financiële resultaten, gemeten door de ROA, EVA, winst, shareholder value, … Daarna wordt met behulp van het ROA- en het EVA-model aangetoond dat een voorraadreductie, een toename van de verkopen en een reductie van de doorlooptijd een positief effect zullen hebben op de waarde van de ROA en EVA en op welke manier dit gebeurt. Tenslotte wordt geïllustreerd hoe enkele best practices uit de operationele wereld (centralisatie van de voorraad, meer accurate vraagvoorspellingen, just in time management en sale and lease back) de financiële cijfers zullen beïnvloeden.
Choose an application
Choose an application
Listing 1 - 10 of 81 | << page >> |
Sort by
|