Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach. A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses on finite difference and finite element methods. Computer-aided calculation with Maple™ completes the book. Throughout, three fundamental examples are studied with different tools: Poisson's equation, the heat equation, and the wave equation on Euclidean domains. The Black-Scholes equation from mathematical finance is one of several opportunities for extension. Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.
Functional analysis --- Differential equations --- Numerical analysis --- differentiaalvergelijkingen --- functies (wiskunde) --- numerieke analyse
Choose an application
This proceedings volume originates from a conference held in Herrnhut in June 2013. It provides unique insights into the power of abstract methods and techniques in dealing successfully with numerous applications stemming from classical analysis and mathematical physics. The book features diverse topics in the area of operator semigroups, including partial differential equations, martingale and Hilbert transforms, Banach and von Neumann algebras, Schrödinger operators, maximal regularity and Fourier multipliers, interpolation, operator-theoretical problems (concerning generation, perturbation and dilation, for example), and various qualitative and quantitative Tauberian theorems with a focus on transfinite induction and magics of Cantor. The last fifteen years have seen the dawn of a new era for semigroup theory with the emphasis on applications of abstract results, often unexpected and far removed from traditional ones. The aim of the conference was to bring together prominent experts in the field of modern semigroup theory, harmonic analysis, complex analysis and mathematical physics, and to present the lively interactions between all of those areas and beyond. In addition, the meeting honored the sixtieth anniversary of Prof C. J. K. Batty, whose scientific achievements are an impressive illustration of the conference goal. These proceedings present contributions by prominent scientists at this international conference, which became a landmark event. They will be a valuable and inspiring source of information for graduate students and established researchers.
Operator theory --- Functional analysis --- Partial differential equations --- Mathematics --- Mathematical physics --- differentiaalvergelijkingen --- analyse (wiskunde) --- functies (wiskunde) --- wiskunde --- fysica
Choose an application
Choose an application
Choose an application
Operator theory --- Functional analysis --- functies (wiskunde)
Listing 1 - 5 of 5 |
Sort by
|