Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking. Youll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, youll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. Youll learn not only to understand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to todays difficult problems. You will: Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization. Compress deep learning models while maintaining performance. Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them. Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches.
Choose an application
Choose an application
Choose an application
Choose an application
Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization.
Choose an application
Choose an application
This book constitutes the proceedings of the First Workshop on Medical Image Learning with Limited and Noisy Data, MILLanD 2022, held in conjunction with MICCAI 2022. The conference was held in Singapore. For this workshop, 22 papers from 54 submissions were accepted for publication. They selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data.
Deep learning (Machine learning) --- Learning, Deep (Machine learning) --- Iterative methods (Mathematics) --- Machine learning --- Image processing --- Computer vision. --- Computer Imaging, Vision, Pattern Recognition and Graphics. --- Digital techniques. --- Machine vision --- Vision, Computer --- Artificial intelligence --- Pattern recognition systems --- Digital image processing --- Digital electronics
Choose an application
Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level. What You Will Learn Know the basic concepts of optimization tuners, search space, and trials Apply different hyper-parameter optimization algorithms to develop effective neural networks Construct new deep learning models from scratch Execute the automated Neural Architecture Search to create state-of-the-art deep learning models Compress the model to eliminate unnecessary deep learning layers.
Deep learning (Machine learning) --- Neural networks (Computer science) --- Python (Computer program language) --- Scripting languages (Computer science) --- Artificial neural networks --- Nets, Neural (Computer science) --- Networks, Neural (Computer science) --- Neural nets (Computer science) --- Artificial intelligence --- Natural computation --- Soft computing --- Learning, Deep (Machine learning) --- Iterative methods (Mathematics) --- Machine learning
Choose an application
Three-dimensional imaging. --- Deep learning (Machine learning) --- Signal processing.. --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Learning, Deep (Machine learning) --- Iterative methods (Mathematics) --- Machine learning --- 3-D imaging --- 3D imaging --- Three-dimensional imaging systems --- Three-dimensional imaging techniques --- Three-dimensional visualization --- Visualization, Three-dimensional --- Imaging systems
Choose an application
This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics. .
Deep learning (Machine learning) --- Learning, Deep (Machine learning) --- Iterative methods (Mathematics) --- Machine learning --- Engineering --- Cooperating objects (Computer systems). --- Computational intelligence. --- Big data. --- Social media. --- Data Engineering. --- Cyber-Physical Systems. --- Computational Intelligence. --- Big Data. --- Social Media. --- Data processing. --- User-generated media --- Communication --- User-generated content --- Data sets, Large --- Large data sets --- Data sets --- Intelligence, Computational --- Artificial intelligence --- Soft computing
Listing 1 - 10 of 19 | << page >> |
Sort by
|