Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Numerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖≤1; On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization).
Clenshaw–Curtis–Filon --- high oscillation --- singular integral equations --- boundary singularities --- local convergence --- nonlinear equations --- Banach space --- Fréchet-derivative --- finite integration method --- shifted Chebyshev polynomial --- Caputo fractional derivative --- Burgers’ equation --- coupled Burgers’ equation --- maxmin --- supporting vector --- matrix norm --- TMS coil --- optimal geolocation --- probability computing --- Monte Carlo simulation --- order statistics --- extreme values --- outliers --- multiobjective programming --- methods of quasi-Newton type --- Pareto optimality --- q-calculus --- rate of convergence --- wavelets on 3D ball --- uniform 3D grid --- volume preserving map --- Network --- graph drawing --- planar visualizations --- multiple root solvers --- composite method --- weight-function --- derivative-free method --- optimal convergence --- multivariate polynomial regression designs --- G-optimality --- D-optimality --- multiplicative algorithms --- G-efficiency --- Caratheodory-Tchakaloff discrete measure compression --- Non-Negative Least Squares --- accelerated Lawson-Hanson solver
Choose an application
Fluid interfaces are promising candidates for confining different types of materials - e.g., polymers, surfactants, colloids, and even small molecules - and for designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the Physico-chemical bases underlying the formation of layers at fluid interfaces, as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamics features in the interfacial systems, which are far from those conventionally found in the traditional materials. This Special Issue is devoted to studies on fundamental and applied aspects of fluid interfaces, trying to provide a comprehensive perspective on the current status of the research field.
thermal radiations --- magnetic field --- Carreau fluid --- stretching/shrinking surface --- Hall effect --- nonlinear radiations --- HAM --- desulfurization wastewater evaporation technology --- evaporation performance --- orthogonal test --- simulation --- spray coating --- coating film formation --- leveling of coating surface --- fluorescence method --- visualization --- ferromagnetic --- nanofluid --- bioconvection --- porous medium --- heat suction/injection --- magnetic dipole --- liquid-infused surfaces --- durability --- lubricants --- wetting --- liquid-repellent coatings --- annealed Co40Fe40W20 thin films --- magnetic tunnel junctions (MTJs) --- X-ray diffraction (XRD) --- contact angle --- surface energy --- nanomechanical properties --- Prandtl nanofluid flow --- convectively heated surface --- stochastic intelligent technique --- Levenberg Marquardt method --- backpropagated network --- artificial neural network --- Adam numerical solver --- surface hydrophilicity --- graphene --- ice formation --- clearance --- molecular dynamic simulation --- dynamics --- fluid interfaces --- inhalation --- lung surfactant --- nanoparticles --- pollutants --- rheology --- emulsion --- droplet size --- microscopy-assisted --- image analysis --- laser diffraction --- turbidity --- viscosity --- Ree-Eyring nanofluid --- viscous dissipation --- Cattaneo-Christov model --- Koo-Kleinstreuer model --- chemical reaction --- heat transfer --- stretching cylinder --- nonlinear radiation --- Powell–Eyring --- Darcy–Forchheimer --- n/a --- Powell-Eyring --- Darcy-Forchheimer
Choose an application
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
numerical methods --- modeling --- aerodynamics --- Taylor–Green vortex --- slender-body --- neural networks --- shock-channel --- wind gust responses --- installed propeller --- bifurcation --- RANS --- wake --- multi-directional --- bluff body --- MDO --- variable fidelity --- computational fluid dynamics (CFD) --- high angles of attack --- aeroelasticity --- computational fluid dynamics --- wind tunnel --- Godunov method --- flow control --- unsteady aerodynamic characteristics --- overset grid approach --- convolution integral --- MUSCL --- DDES --- dynamic Smagorinsky subgrid-scale model --- CPACS --- flutter --- reduced-order model --- meshing --- vortex generators --- hybrid reduced-order model --- microfluidics --- Riemann solver --- characteristics-based scheme --- CFD --- wing–propeller aerodynamic interaction --- kinetic energy dissipation --- Euler --- formation --- square cylinder --- multi-fidelity --- turbulence model --- subsonic --- large eddy simulation --- after-body --- flow distortion --- VLM --- numerical dissipation --- hypersonic --- modified equation analysis --- fluid mechanics --- reduced order aerodynamic model --- p-factor --- URANS --- flexible wings --- chemistry --- detection --- microelectromechanical systems (MEMS) --- angle of attack --- sharp-edge gust --- truncation error --- aerodynamic performance --- quasi-analytical --- gasdynamics --- discontinuous Galerkin finite element method (DG–FEM) --- geometry --- S-duct diffuser
Choose an application
This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions.
automotive --- current --- electric power train --- electric vehicle --- embedded systems --- delay --- detection --- distributed systems --- measurements --- power train --- sensor --- signals --- time delay estimation --- unmanned aerial vehicles --- wireless sensor networks --- intelligent data processing --- trajectory planning --- relevant data extraction --- data consensus --- Internet of Things --- precision agriculture --- system identification --- smart building --- artificial neural network --- energy efficiency --- black box modeling --- educational robotics --- data acquisition --- sensors --- ROS --- STEM --- CNN (Convolutional neural networks) --- deep learning --- pavement defects --- residual connection --- attention gate --- atrous spatial pyramid pooling --- intelligent charging --- demand response --- linear programming --- optimization --- smart parking --- smart grid --- ODE Solver --- OpenCL --- Parareal --- parallel/multi-core computing --- sensing systems --- heterogenous embedded systems --- deep sparse auto-encoders --- medical diagnosis --- linear model --- data classification --- PSO algorithm --- safety-related system --- component --- FPGA-designing --- logical and power-oriented checkability --- hidden faults --- clock signal --- consumed and dissipated power --- temperature and current consumption sensors --- n/a
Choose an application
This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.
lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0
Choose an application
Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data.
image dehazing --- traffic video dehazing --- dark channel prior --- spatial-temporal correlation --- contrast enhancement --- traffic signal control --- game theory --- decentralized control --- large-scale network control --- railway intrusion detection --- scene segmentation --- scene recognition --- adaptive feature extractor --- convolutional neural networks --- in-cylinder pressure identification --- speed iteration model --- EKF --- frequency modulation --- amplitude modulation --- sensor synchronization --- microscopic traffic data --- trajectory reconstruction --- expectation maximization --- vehicle matching --- artificial neural networks --- metro --- transportation --- user flow forecast --- matrix inversion --- time-varying matrix --- noise problem in time-varying matrix inversion --- recurrent neural network (RNN) --- RNN-based solver --- real-time fast computing --- real-time estimation --- probe vehicle --- traffic density --- neural network --- level of market penetration rate --- deep neural network --- neural artistic extraction --- objectification --- ride comfort --- subjective evaluation --- road surface recognition --- Gaussian background model --- abnormal road surface --- acceleration sensor --- traffic state prediction --- spatio-temporal traffic modeling --- simulation --- machine learning --- hyper parameter optimization --- ITS --- crash risk modeling --- hazardous materials --- highway safety --- operations research --- prescriptive analytics --- shortest path problem --- trucking --- vehicle routing problem --- data visualization --- descriptive analytics --- predictive analytics --- urban rail transit interior noise --- smartphone sensing --- XGBoost classifier --- railway maintenance --- vehicle trajectory prediction --- license plate data --- trip chain --- turning state transit --- route choice behavior --- real world experiment --- Intelligent Transportation Systems (ITS) --- advanced traveler information systems (ATIS) --- connected vehicles --- particle filter --- Kalman filter --- road safety --- travel time information system --- safety performance function --- bicycle sharing systems --- public transport systems --- data-driven classification of trips --- BSS underlying network --- trip index --- automatic rail-surface-scratch recognition and computation --- triangulation algorithm --- complete closed mesh model --- online rail-repair --- autonomous vehicle --- obstacle avoidance --- artificial potential field --- model predictive control --- human-like --- variable speed limits --- intelligent transportation systems --- ITS services --- driving simulator studies --- traffic modelling --- surrogate safety measures --- driving safety --- driving emotions --- driving stress --- lifestyle --- sensors --- heart rate --- plate scanning --- low-cost sensor --- sensor location problem --- traffic flow estimation --- n/a
Listing 1 - 6 of 6 |
Sort by
|