Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
An important requirement for the combination of two materials in order to get a low stress and low warpage, crack-free composite component is a timely synchronized sintering behavior of both components. The aim of this work was to analyze the effect of the particle size distribution on the sintering behavior and the resulting consequences of the particle size change for the flow properties during injection molding.
flow properties --- Fließverhalten --- Partikelgrößenverteilungen --- feedstock --- Metallpulverspritzgießen --- Sinterverhalten --- sintering behavior --- particle size distribution --- Feedstockmetal injection molding
Choose an application
This work presents novel simulation techniques for injection molding of fiber reinforced polymers. These include approaches for anisotropic flow modeling, hydrodynamic forces from fluid on fibers, contact forces between fibers, a novel fiber breakage modeling approach and anisotropic warpage analysis. Due to the coupling of fiber breakage and anisotropic flow modeling, the fiber breakage directly influences the modeled cavity pressure, which is validated with experimental data.
Mechanical engineering & materials --- Spritzgusssimulation --- anisotropes Fließen --- Faserbruch --- Faserkräfte --- Verzugsanalyse --- injection molding simulation --- anisotropic flow --- fiber breakage --- fiber forces --- warpage analysis
Choose an application
Im Rahmen dieser Arbeit wird das Heißprägeverfahren für große Formate und Strukturen mit hohen Aspektverhältnissen weiter entwickelt.Weiterhin werden Möglichkeiten zur Herstellung großformatiger Formeinsätze und zur Abformung durchgehender
polymer --- microstructure --- electroplating --- Polymere --- Galvanotechnik --- Prozessentwicklung --- Formwerkzeug --- Mikrostruktur --- Kunststoffverarbeitung --- Mikrosystemtechnik --- LIGA --- Formeinsatz --- mold insert --- injection molding --- hot embossing --- Heißprägen --- microsystem technology --- LIGA-Verfahren
Choose an application
Discontinuous fiber-reinforced polymers have gained importance in the transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes. Typical processes involving discontinuous fiber reinforced thermoplastic composite materials include injection and compression molding processes as well as extrusion. Furthermore, the automotive and appliance industries also use thermosets reinforced with chopped fibers in the form of sheet molding compound and bulk molding compound, for compression and injection-compression molding processes, respectively. A big disadvantage of discontinuous fiber composites is that the configuration of the reinforcing fibers is significantly changed throughout production process, reflected in the form of fiber attrition, excessive fiber orientation, fiber jamming and fiber matrix separation. This process-induced variation of the microstructural fiber properties within the molded part introduces heterogeneity and anisotropies to the mechanical properties, which can limit the potential of discontinuous fiber reinforced composites for lightweight applications. The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber reinforced composites and the effect processing has on fiber orientation, fiber length and fiber density distributions throughout the final part. Papers presenting investigations on the effect fiber configurations have on the mechanical properties of the final composite products and materials are welcome in the Special Issue. Researchers who are modeling and simulating processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites are welcomed to submit papers. Authors are encouraged to present new models, constitutive laws and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and facilitate their use in different engineering applications.
fiber attrition --- compression molding --- fiber density distributions --- micro computed tomography --- chopped fibers --- discontinuous fibers --- fiber orientation distributions --- sheet molding compound (SMC) --- fiber length distributions --- compounding --- short fiber reinforced thermoplastics (SFT) --- long fiber reinforced thermoplastics (LFT) --- bulk Molding Compound (BMC) --- injection molding
Choose an application
The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.
n/a --- Fresnel lenses --- Electro sinter forging --- micro-injection moulding --- surface roughness --- charge relaxation time --- optimization --- gratings --- plasma-electrolytic polishing --- micro structures replication --- micro-grinding --- electrical discharge machining --- injection molding --- quality control --- commercial control hardware --- electrical current --- damping --- process monitoring --- fingerprints --- impact analysis --- current monitoring --- process control --- quality assurance --- surface integrity --- microfabrication --- microinjection moulding --- electro chemical machining --- superhydrophobic surface --- surface modification --- haptic actuator --- electrical discharge machining (EDM) --- surface morphology --- inline metrology --- optical quality control --- finishing --- flow length --- precision injection molding --- laser ablation --- micro metrology --- Halbach linear motor --- 2-step analysis --- computer holography --- PeP --- satellite drop --- process fingerprint --- materials characterisation --- current density --- micro drilling --- multi-spectral imaging --- lithography --- manufacturing signature --- artificial compound eye --- electrohydrodynamic jet printing --- ECM --- positioning platform --- diffractive optics --- bioceramics --- resistance sintering --- uncertainty budget --- product fingerprint --- confocal microscopy --- spectral splitting --- dental implant --- desirability function --- injection compression molding --- electrochemical machining (ECM) --- high strain rate effect --- process fingerprints
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a
Choose an application
Micro- and nanomanufacturing technologies have been researched and developed in the industrial environment with the goal of supporting product miniaturization and the integration of new functionalities. The technological development of new materials and processing methods needs to be supported by predictive models which can simulate the interactions between materials, process states, and product properties. In comparison with the conventional manufacturing scale, micro- and nanoscale technologies require the study of different mechanical, thermal, and fluid dynamics, phenomena which need to be assessed and modeled.This Special Issue is dedicated to advances in the modeling of micro- and nanomanufacturing processes. The development of new models, validation of state-of-the-art modeling strategies, and approaches to material model calibration are presented. The goal is to provide state-of-the-art examples of the use of modeling and simulation in micro- and nanomanufacturing processes, promoting the diffusion and development of these technologies.
modular microfluidic system --- 3D printing --- gel microspheres --- laser-induced periodical surface structures --- micro-injection molding --- replication --- surface wettability --- micro-groove --- electrochemical machining --- porous cathode --- conductive mask --- machining localization --- dimensional uniformity --- nanogrinding --- abrasive grains --- rake angle --- spacing --- grinding forces --- grinding temperature --- chip formation --- subsurface damage --- micro injection molding --- additive manufacturing --- stereolithography --- K9 glass --- mathematical model --- grinding force --- brittle fracture --- ductile–brittle transition --- active grains number --- lithography simulation --- microelectromechanical system --- waveguide method --- microstructure --- radial ultrasonic rolling electrochemical micromachining (RUR-EMM) --- material removal amount --- surface roughness --- response surface methodology (RSM) --- turning --- minimum chip thickness --- micromachining --- femtosecond micromachining --- burst processing --- intraocular lens --- hydrophilic acrylic --- polishing --- laser assisted turning --- tungsten carbide --- diamond turning --- finite element analysis --- prostheses --- ITAP --- micro topology --- ANSYS --- MATLAB --- additive manufacture --- n/a --- ductile-brittle transition
Choose an application
This book focuses on fundamental and applied research on polymer processing and its effect on the final surface as the optimization of polymer surface properties results in the unique applicability of these over other materials. The development and testing of the next generation of polymeric and composite materials is of particular interest. Special attention is given to polymer surface modification, external stimuli-responsive surfaces, coatings, adhesion, polymer and composites fatigue analysis, evaluation of the surface quality and microhardness, processing parameter optimization, characterization techniques, among others.
thermoplastic polyurethanes blends --- pressure sensitive adhesives --- viscoelastic properties --- adhesion properties --- tack --- creep --- cohesion properties --- nano-structure functional film --- magnetron sputtering --- cellulose insulation polymer --- space charge --- hydrophobicity --- zinc oxide --- polytetrafluoroethylene --- bromoisobutyryl esterification --- cornstarch --- synthesis process --- past stability --- adhesion --- film properties --- mullite --- whiskers --- nonaqueous precipitation method --- aluminum fluoride --- polar transformation --- screw --- aspect ratio --- carbon nanotube --- dispersion --- masterbatch --- nanocomposite --- polyamide --- polyamide 6 --- halloysite nanotube --- functionalizing agent --- in situ polymerization --- melt blending --- polymorphism --- hydrothermal ageing --- polymers --- octaglycidyl-POSS --- DGEBA --- dicyandiamide --- accelerators --- corrosion --- protective coatings --- infrared spectroscopy --- rheology --- poplar wood --- waterborne UV lacquer product --- wood modification --- contact angle --- spectroscopy --- super-hydrophobic coating --- elastic sensor --- carbon nanotubes --- wearable electronics --- monitoring of breathing --- strain sensor --- polymer composite --- CNTs --- construction composite --- friction resistance --- surface state --- low dielectric constant --- PI --- irradiation --- dielectric loss --- tin compounds --- valsartan --- poly(vinyl chloride) --- additives --- average molecular weight --- weight loss --- functional group index --- PET --- polymer --- plasma jet --- tilted application --- ROS distribution --- UV --- VUV --- epoxy --- Joule heating --- fast curing --- accelerated forming --- shape memory --- Acrylonitrile Butadiene Styrene --- sound absorption --- 3D printing technology --- frequency --- thickness --- air gap --- polyvinyl alcohol --- cationic polyacrylamide --- polyvinyl chloride --- azodicarbonamide --- micro-structure --- diffusion plate --- micro injection molding --- grinding --- ethylene-octene-copolymer --- carbon fibers --- polyaniline --- polypyrrole --- thermoelectric composites --- surface coating --- dopamine hydrochloride --- graphene oxide --- surgical suture --- friction --- Poly(vinylidene chloride-co-acrylonitrile) (P(VDC-co-AN )) --- thermo-dynamic surface characterization --- surface free energy --- inverse gas chromatography --- visual traits --- computer vision and image processing --- basalt fiber --- epoxy composite --- glass transition temperature --- DMA --- TMA --- creep recovery --- stress-relaxation --- heterogeneous nucleation --- cell morphology --- injection molding foaming --- composite materials --- visualization --- gloss transition defect --- surface defect --- surface gloss --- shrinkage --- mold surface replication --- surface analysis --- injection molding --- polymer surface modification --- hydrophobic properties --- optimization --- mathematical modeling --- poly(ethylene glycol) (PEG) --- conjugation --- N,N′-disuccinimidyl carbonate (DSC) --- immobilization --- surface modification --- ultra-high molecular weight polyethylene --- cellulose nanofiber --- bionanocomposite --- melt-blending --- ethanol mixing
Choose an application
Following a previous topic (Scientific advances in STEM: from professors to students; https://www.mdpi.com/topics/advances_stem), this new topic aims to highlight the importance of establishing collaborations among research groups from different disciplines, combining the scientific knowledge from basic to applied research as well as taking advantage of different research facilities. Fundamental science helps us to understand phenomenological basics, while applied science focuses on products and technology developments, highlighting the need to perform a transference of knowledge to society and the industrial sector.
Technology: general issues --- History of engineering & technology --- porous dental implant --- fatigue resistance --- cellular behavior --- surface roughness --- chemicaletching --- bioglass coating --- porous titanium --- femtosecond laser --- surface modification --- instrumented micro-indentation --- scratch test --- wettability --- cell culture --- electrical impedance --- osseointegration --- bimodal microstructure --- hot-pressing --- powder metallurgy --- mechanicalmilling --- mechanical behavior --- biofilms --- gelatin --- nanoparticles --- iron oxide --- antioxidant activity --- antibacterial activity --- electrospinning --- cellulose acetate --- ethylcellulose --- nanostructures --- rheological properties --- thermal properties --- microstructure --- bioplastics --- rice bran --- rice bran oil --- valorization --- starch --- injection molding --- Rugulopteryx okamurae --- DMA --- seaweed --- : cost function --- controlled release --- Arrabidae chica Verlot --- chitosan/alginate membranes
Choose an application
The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.
metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph
Listing 1 - 10 of 25 | << page >> |
Sort by
|