Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
hotspots --- Magmatic processes --- seamounts --- Geochronology --- Tectonic control --- flexure models --- volcanic hazard
Choose an application
This volume comprises the first collection of papers submitted by the Editorial Board Members (EBMs) of the journal Mathematical and Computational Applications (MCA), as well as outstanding scholars working in the core research fields of MCA. This collection typifies the most insightful and influential original articles regarding key topics in these fields.
Strength of materials. --- Materials science. --- Material science --- Physical sciences --- Architectural engineering --- Engineering, Architectural --- Materials, Strength of --- Resistance of materials --- Building materials --- Flexure --- Mechanics --- Testing --- Elasticity --- Graphic statics --- Strains and stresses
Choose an application
This book covers recent advances in the method used in testing, especially in the case of structural integrity that includes fatigue and fracture tests, vibrations test and surface engineering tests that are extremely crucial and widely used by engineers and industries. The book will provide you with information on how to apply the advanced formulation, advanced theory and advanced method of testing that are relevant to all engineering fields: mechanical, electrical, civil, materials and surface engineering. The topics are explained comprehensively, including the reliable test that one should perform in order to effectively investigate the strength and validation of the developed theory or model. I hope that the material is not too theoretical and that the reader finds the case study, formulation, testing method and the analysis helpful for tackling their own engineering and science based studies.
Strains and stresses. --- Architectural engineering --- Engineering, Architectural --- Stresses and strains --- Architecture --- Elastic solids --- Flexure --- Mechanics --- Statics --- Structural analysis (Engineering) --- Deformations (Mechanics) --- Elasticity --- Engineering design --- Graphic statics --- Strength of materials --- Stress waves --- Structural design --- Engineering Mechanics --- Engineering --- Physical Sciences --- Engineering and Technology --- Mechanical Engineering
Choose an application
Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book fo
Integrated circuits --- Metal oxide semiconductor field-effect transistors --- Strains and stresses. --- Fault tolerance. --- Reliability. --- Architectural engineering --- Engineering, Architectural --- Stresses and strains --- Architecture --- Elastic solids --- Flexure --- Mechanics --- Statics --- Structural analysis (Engineering) --- Deformations (Mechanics) --- Elasticity --- Engineering design --- Graphic statics --- Strength of materials --- Stress waves --- Structural design --- MOSFET --- Field-effect transistors --- Metal oxide semiconductors --- Fault tolerance (Engineering) --- Reliability
Choose an application
The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.
metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph
Choose an application
This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics.
Technology: general issues --- History of engineering & technology --- path generation --- dimensional synthesis --- hybrid optimization --- slider-crank mechanism --- hybrid compliant mechanisms --- path analysis --- numerical methods --- elliptic integrals --- kinematics --- Levenberg–Marquardt algorithm --- convergence --- neural networks --- local minima --- optimization --- three-legged parallel mechanism --- compliant mechanism --- flexure-based mechanism --- flexure --- compliant joint --- decoupled motion --- coupled motion --- stiffness --- compliance --- suspension algorithm --- predictive suspension --- land vehicle --- sprung mass --- autoencoder --- aeroengine --- denoising --- GRU --- rotordynamic --- adaptive rejection control --- sinusoidal disturbance --- flexible rotor --- hydrodynamic journal bearing --- six-bar mechanism --- dynamic balancing --- fully Cartesian coordinates --- multiobjective optimization --- differential evolution --- Pareto front --- serial robotic manipulators --- singularity identification --- geometric algebra --- rotor group --- distance to a singularity --- air flow medical sensor --- emergency air flow sensor --- low-cost air flow sensor --- nanostructures --- COVID-19 --- FEM analysis --- biomechanics --- effort mathematical models --- NMR reconstruction --- reverse engineering --- elbow joint --- zipper-coupled tubes --- Miura-ori pattern --- deployable mechanism --- origami inspired design --- smooth sheet attachment --- relative rotation --- jump --- safe basin --- fractal --- heteroclinic bifurcation --- delayed feedback --- helical spring --- vibration --- Frenet trihedral --- dispersion relation --- natural frequency --- approximate entropy --- non-linear systems --- phase space reconstruction --- fault classification --- random forest --- support vector machines --- lateral dynamics --- track parameters --- vehicle mathematical modeling --- safety vehicle index
Choose an application
Wood composites have shown very good performance and substantial service lives when correctly specified for the exposure risks present. The selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment, or by wood modification techniques. This Special Issue, “Advances in Wood Composites II”, presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials. Such enhancements and refinements have made wood composites a particular area of interest for researchers. In addition, this Special Issue reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetically by the structure of wood and wood composites. This Special Issue, as a collection of 14 original contributions, provides selected examples of recent advances in wood composites.
EPDM rubber --- wood sawdust --- electron beam irradiation --- dibenzoyl peroxide --- cross-liking --- physico-chemical characteristics --- feather protein --- wood preservatives --- nano-carrier --- treatability --- decay resistance --- short-rotation --- aspen --- willow --- injection molding --- biocomposite --- tensile strength --- bending strength --- microstructure behavior --- viscoelasticity --- WPC --- HDPE --- composite --- wood --- creep --- thermoplastic --- flexure --- power law --- modeling --- fire retardants --- fire retardancy --- graphene --- nano-materials --- wollastonite --- black locust wood --- ammonia treated wood --- colour change --- dynamic mechanical analysis --- birch plywood --- veneer-drying temperature --- formaldehyde emission --- modulus of elasticity --- bonding strength --- thickness swelling --- water absorption --- transparent wood --- orthogonal test --- partial delignification --- light transmittance --- morphological structure --- sorption behavior --- sorption fitting model --- compositional analysis --- hydroxyl accessibility --- engineering materials --- composite panels --- chicken feather --- cell-wall polymers --- thermal conductivity coefficient --- natural materials --- spruce and larch bark --- sound absorption coefficient --- impedance tube --- biomass --- up-cycling --- plywood --- densification --- core layer temperature --- bonding quality --- hot pressing --- veneer stack heating --- wood composites --- wood composite binders --- synthetic wood adhesives --- biosourced wood adhesives --- environment-friendly --- new approaches --- n/a
Choose an application
Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.
steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a
Choose an application
The articles featured in this Special Issue cover different aspects of the design, testing, and application of various types of supplementary cementitious materials in concrete. The results of the research, conducted by over 50 international universities and scientific centers, prove the great interest in the SCM topic.
crystalline admixture --- chemical exposure --- sulphuric acid attack --- durability --- Xypex --- fly ash --- substitution strategy --- structural concrete --- steel reinforcement --- limit states --- RC beams in bending --- carbon footprint --- concrete --- carbonation modeling --- calcareous fly ash --- biomass --- wood ash --- fibrocement --- strength --- mortar --- clean coal combustion --- fluidized bed fly ash --- microstructure --- phase composition --- portlandite --- unburned carbon --- slag --- soil stabilization --- embankment --- cement --- lime --- high temperature --- damage --- permeability --- CEMI and CEMIII --- mechanical properties --- alkali-activated concrete --- geopolymer concrete --- flexure --- beams --- fiber-reinforced concrete --- crack spacing --- tension stiffening --- bamboo ash --- supplementary materials --- elevated temperature --- high volume fly ash (HVFA) --- steel reinforcing fiber --- jacketing --- environmental impact --- fibre reinforced --- alkali-activated --- strain hardening --- recycled cementitious supplementary material --- comprehensive concrete recycling --- recycled fine fraction --- rehydration reactivity --- compressive strength --- ground granulated blast furnace slag --- apparent activation energy --- equivalent age --- construction debris --- recycling --- circular economy --- eco-friendly concretes --- fly ash (FA) --- silica fume (SF) --- palm oil fuel ash (POFA) --- rice husk ash (RHA) --- sewage sludge ash (SSA) and sugarcane bagasse ash (SBA) --- mine tailings --- marble dust --- construction and demolition debris (CDD) --- porous feldspar --- activation --- substitute material --- energy saving concrete --- calcined clay --- binder --- supplementary cementitious materials --- cement-based materials --- steatite --- wood particles --- Portland cement --- fire performance --- tensile strength --- micro-silica/silica fume --- steel fiber --- high performance concrete (HPC) --- self-consolidating concrete (SCC) --- flowability --- freeze-thaw cycle --- fire resistance --- bentonite --- clays --- cryogenic condition --- GGBS --- thermal conductivity --- semi-adiabatic test --- n/a --- Technology.
Listing 1 - 9 of 9 |
Sort by
|