Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

VIVES (7)

Vlaams Parlement (7)


Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (2)

2021 (3)

2020 (2)

Listing 1 - 7 of 7
Sort by

Book
Modeling and Simulation of Electricity Systems for Transport and Energy Storage
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises five peer-reviewed articles covering original research articles on the modeling and simulation of electricity systems for transport and energy storage. The topics include: 1 - Optimal siting and sizing methodology to design an energy storage system (ESS) for railway lines; 2 - Technical–economic comparison between a 3 kV DC railway and the use of trains with on-board storage systems; 3 - How to improve electrical feeding substations, by changing transformer technology and by installing dedicated high-power-oriented storage systems; 4 - Algorithm applied to a vehicle-to-grid (V2G) technology. 5 - Thermal investigation and optimization of an air-cooled lithium-ion battery pack.


Book
Integration and Control of Distributed Renewable Energy Resources
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The deployment of distributed renewable energy resources (DRERs) has accelerated globally due to environmental concerns and an increasing demand for electricity. DRERs are considered to be solutions to some of the current challenges related to power grids, such as reliability, resilience, efficiency, and flexibility. However, there are still several technical and non-technical challenges regarding the deployment of distributed renewable energy resources. Technical concerns associated with the integration and control of DRERs include, but are not limited, to optimal sizing and placement, optimal operation in grid-connected and islanded modes, as well as the impact of these resources on power quality, power system security, stability, and protection systems. On the other hand, non-technical challenges can be classified into three categories—regulatory issues, social issues, and economic issues. This Special Issue will address all aspects related to the integration and control of distributed renewable energy resources. It aims to understand the existing challenges and explore new solutions and practices for use in overcoming technical challenges.


Book
Energy Harvesting and Energy Storage Systems
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources.


Book
Standalone Renewable Energy Systems : Modeling and Controlling
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines, hydro turbines or any other renewable electrical generator. Usually, this kind of system includes electricity storage (commonly lead-acid batteries, but also other types of storage can be used). In some cases, a backup generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system. The modelling of the components, the control of the system and the simulation of the performance of the whole system are necessary to evaluate the system technically and economically. The optimization of the sizing and/or the control is also an important task in this kind of system.


Book
Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above.


Book
Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods.

Keywords

Advanced Metering Infrastructure (AMI) --- Distributed Energy Resources (DER) --- Distribution Management System (DMS) --- Graph Reduction in Parallel (GRIP) --- Intelligent Electronic Device (IED) --- Intelligent Platform Management Interface (IPMI) --- Service Oriented Architecture (SOA) --- Ultra Large-Scale System (ULSS) --- photovoltaic systems --- MPPT technique --- partial shading --- global MPP (GMPP) --- nature-inspired algorithms --- congestion management --- power flow --- generator rescheduling --- Flower Pollination Algorithm (FPA) --- Pumped Hydro Storage Unit (PHSU) --- ancillary services --- grid --- inverter --- PV --- reactive power --- solar --- Quasi-Z source inverter (QZSI) --- Y source inverter (YSI) --- energy storage system (ESS) --- hybrid renewable energy sources (HRES) --- demand --- load --- RBFNOEHO technique --- common mode current --- common mode voltage --- modulation techniques --- electromagnetic interference --- mitigation --- grid connected inverters --- rotor angle --- small signal stability --- householder algorithm --- power systems --- electric vehicles --- charging station --- transformer --- Energy PLAN --- renewable energy --- maximum demand (MD) --- solar PV --- battery energy storage system (BESS) --- net energy metering (NEM) --- maximum demand reduction (MDRed) model --- power quality --- voltage variations --- PV system --- aggregation times --- correlation analysis --- harmonic analysis --- wavelet transform --- wavelet packet --- measurement techniques --- cloud services --- trust management --- secure computing --- smart meter --- LBSS --- user-aware power regulatory model


Book
Wind Power Integration into Power Systems: Stability and Control Aspects
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South Australia) due to the substantially increased wind power generation. Control techniques, such as virtual/emulated inertia and damping controls, could be developed to address these stability issues, and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse impact of high wind power generation on various system stability problems. Moreover, other wind power integration aspects, such as capacity planning and the short- and long-term forecasting of wind power generation, also require careful attention to ensure grid security and reliability. This book includes fourteen novel research articles published in this Energies Special Issue on Wind Power Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and control to system capacity planning and forecasting.

Keywords

DFIG --- ES --- virtual inertia control --- capacity allocation --- fuzzy logic controller --- wind power generation --- multi-model predictive control --- fuzzy clustering --- virtual synchronous generator --- doubly fed induction generator --- sub-synchronous resonance --- impedance modeling --- renewable energy sources (RESs) --- regional RoCoF --- model-based operational planning --- linear sensitivity-based method (LSM) --- cumulant-based method (CBM) --- collaborative capacity planning --- distributed wind power (DWP) --- energy storage system (ESS) --- optimization --- variable-structure copula --- Reynolds-averaged Navier–Stokes method --- wind turbine wake model --- 3D aerodynamic model --- turbulence model --- correction modules --- hybrid prediction model --- wavelet decomposition --- long short-term memory --- scenario analysis --- weak grids --- full-converter wind --- active power output --- control parameters --- subsynchronous oscillation --- eigenvalue analysis --- doubly fed induction generator (DFIG) --- wind generation --- frequency control --- artificial neural network (ANN) --- error following forget gate-based long short-term memory --- ultra-short-term prediction --- wind power --- load frequency control (LFC) --- wind farm --- particle swarm optimization --- kinetic energy --- inertial response --- low inertia --- the center of inertia --- frequency response metrics --- wind integration --- PSS/E --- FORTRAN --- electromechanical dynamics --- FCWG dynamics --- strong interaction --- electromechanical loop correlation ratio (ELCR) --- FCWG dynamic correlation ratio (FDCR) --- quasi- electromechanical loop correlation ratio (QELCR) --- permanent magnet synchronous generator (PMSG) --- supercapacitor energy storage (SCES) --- rotor overspeed control --- low voltage ride through (LVRT) --- capacity configuration of SCES --- n/a --- Reynolds-averaged Navier-Stokes method

Listing 1 - 7 of 7
Sort by