Listing 1 - 3 of 3 |
Sort by
|
Choose an application
""Structural Control"" remains a crucial point that frequently lacks in any scientific and/or economic analysis of ore deposits, whatever their type and class. The case of lode deposits is exemplary, although also other deposits, like breccia pipe, stockwerk, massive sulphides, skarn, etc., can, surprisingly, be concerned. Several concepts like the gold-bearing shear zone have not proven valid during the last few decades in terms of our understanding of gold deposit and have been totally abandoned. Additionally, the relationships between magmatism, regional tectonic context, and mineralization remain uncertain and have been debated in several recent publications. This demonstrates that this issue is still relevant, and its solution may help in the distinction between intrusion-related and orogenic deposits. In this Special Issue, we particularly invite any case study of mineral deposits, in which it has been demonstrated that structural geology may have a significant role in the establishment of the deposit model of formation and/or on exploration and exploitation programs. Examples in which the structural model diverges from those described in the classical literature are particularly welcomed, including studies in which relationships with magmatism can be suspected and/or demonstrated. Indeed, all cases that illustrate concepts that differ from the classic ones and from theoretical models may represent significant contributions to this volume.
shallow diagenesis --- arsenopyrite --- buffer-based analysis --- vein-filling --- textures --- hydrothermal breccia --- Pyrenean Axial Zone --- Tibet --- remobilization --- pull-apart --- spatial analysis --- tectonic control --- thrust fault --- silicic large igneous province --- hinge trap --- hydraulic breccia --- vein --- exploration --- mafic dikes --- Tiegelongnan --- orogenic gold mineralization --- porphyry --- base metal massive sulfide deposits --- overprinting --- deformation bands --- clay authigenesis --- fractal --- uranium deposits --- replacement --- sphalerite --- Tongling --- comb quartz --- strike-slip fault --- pre-existing structures --- preservation --- ignimbrite flare-ups --- dilational jogs --- Pb-Zn deposits --- deformation structure --- silicification --- SEDEX --- fault zones --- Verkhoyansk-Kolyma folded region --- decollement --- structural control --- IRGD --- Khangalas ore cluster --- infilling --- breccia --- late Variscan strike-slip faults --- data-driven model --- mineralization chronology --- shear zone --- epithermal --- structure --- Hajjar --- orogenic gold --- Kiggavik --- sulphide lenses --- Anti-Atlas --- ash-flow caldera
Choose an application
Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.
graphene nano-powder --- thermal nanofluid --- rheological behavior --- Carreau nanofluid --- lubrication effect --- Vallejo law --- liquid–liquid interface --- shear rate --- nanoparticles --- diffuse interface --- phase field method --- molecular dynamics --- numerical simulation --- octree optimization --- microstructure generation --- domain reconstruction --- flow simulation --- permeability computing --- data-driven model --- model order reduction --- proper orthogonal decomposition --- manifold learning --- diffuse approximation --- microcapsule suspension --- Hausdorff distance --- topological data analysis (TDA) --- reinforced polymers --- concentrated suspensions --- flow induced orientation --- discrete numerical simulation --- steam generator --- void fraction --- mixture model --- porous media approach --- reduced-order model --- Proper Orthogonal Decomposition (POD) --- energy dissipation --- interval-pooled stepped spillway --- omega identification method --- Navier-Stokes equation --- singularity --- transitional flow --- turbulence --- Poisson equation --- nanoparticle two-phase flow --- particle coagulation and breakage --- flow around circular cylinders --- particle distribution --- n/a --- liquid-liquid interface
Choose an application
This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.
real-time optimal control --- system coefficient of performance --- event-driven optimal control --- building energy efficiency --- heat wheel --- direct expansion cooling --- ventilation system --- energy consumption --- load forecast fuzzy (LFF) control --- SVM method --- building HVAC system --- time delay effect --- optimal control strategy --- phase change material --- hysteresis --- simulations --- EnergyPlus --- thermal energy storage --- green roofs --- buildings --- air conditioning --- energy efficiency --- mediterranean area --- building energy consumption --- building load forecasting --- rough set theory --- thermal improved of buildings --- single-family house --- detached house --- energy renovation --- deep retrofit --- power demand --- electric heating --- ground-source heat pump --- hybrid energy system --- microgrid --- military applications --- renewable energy --- remote areas --- electricity --- HVAC --- demand forecasting --- flexibility --- office building --- Smart Grid --- fault correction --- fault detection and diagnostics --- building operation --- field testing --- nZEB, BIPV --- room ventilation --- dynamic thermal insulation --- multi-parametric model --- energy optimization --- steady-state control --- building energy control system --- comfort and engineering --- buidling simulation (EnergyPlus and MATLAB) --- long-term thermal energy storage --- seasonal thermal energy storage --- thermochemical energy storage --- liquid sorption storage --- power-to-heat --- seasonal energy flexibility --- seasonal load shifting --- virtual battery effect --- design-time optimization --- cost modeling and simulation --- cyber-physical system --- electrical energy system --- sustainable energy planning --- sustainable power planning --- design space exploration --- SystemC-AMS --- window frames --- numerical analysis --- hot box --- sensitivity analysis --- demand flexibility --- control system --- optimization --- resiliency --- smart buildings --- distributed energy resources --- model predictive control --- data-driven model --- artificial neural network --- physical building model --- energy flexibility --- urban scale --- building energy simulation --- regression --- building archetypes --- energy performance of buildings --- solar passive systems --- low energy buildings --- smart districts --- smart grids --- smart readiness indicator --- energy performance of buildings directive --- load shifting --- demand response --- building-integrated photovoltaics --- BIPV --- hidden coloured BIPV module --- BIPV integration --- photovoltaic --- PV
Listing 1 - 3 of 3 |
Sort by
|