Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Plants are made up of a large number of distinct cell types that originate from a single fertilized egg cell. How the diversity of cell types arise in appropriate places is one of the most fascinating and attractive research areas of plant biology. During the past several decades, due to the development of new molecular techniques and tools, advances in optical microscopy, and availability of whole genome information and mutants in the model plant Arabidopsis and other plants, great advances have been made in understanding the mechanisms involved in cell fate determination in plants. Multiple mechanisms are used to generate cellular diversity. Asymmetric cell division is one of the primary mechanisms. As an example, asymmetric cell division enables one stem cell to generate a stem cell daughter and a daughter with a distinct identity. Initially equivalent cells can also differentiate to generate different cell types. This mechanism has been clearly demonstrated in the formation of multiple cell types during epidermis development in the shoot and root. Cell fate determination is influenced by both intrinsic factors, i.e, developmental regulators, as well as extrinsic signals, i.e., environmental stimuli. By using model systems like stomata, trichome, root hair and shoot and root apical meristem cells, ligands, receptors and transcription factors have been found to regulate cell fate determination. However, the details of signaling cassettes responsible for cell fate determination remain largely unknown. Plants are made up of a large number of distinct cell types that originate from a single fertilized egg cell. How the diversity of cell types arise in appropriate places is one of the most fascinating and attractive research areas of plant biology. During the past several decades, due to the development of new molecular techniques and tools, advances in optical microscopy, and availability of whole genome information and mutants in the model plant Arabidopsis and other plants, great advances have been made in understanding the mechanisms involved in cell fate determination in plants. This research topic contains 12 collected articles, including 2 Opinion Articles, 5 Reviews, 4 Mini Reviews, and 1 Original Research Article. Hopefully, these articles will expand our understanding of the regulation of cell fate determination in plants.
Cotton Fiber --- transcription factor --- stomata --- Xylem --- protein lipid modification --- root hair --- Arabidopsis --- cell fate determination --- Populus --- Trichome
Choose an application
The papers included in this special issue cover a broad range of aspects ranging from genetics and breeding to crop production in the field. Climate change, intensified agriculture, modifications of land use, or pollution are often accompanied by larger fluctuations including extreme events. The growing world’s population and nutrient deficiencies in agricultural products for human or animal nutrition, or pollutants in harvested products in some regions (quality of yield), are important points to be integrated in a comprehensive analysis aimed at supporting agriculture on the way into a challenging future. It is therefore necessary to develop suitable models to identify potentials and risks. Instabilities (e.g., caused by climatic factors or pests) should be detected as early as possible to initiate corrections in the nutrient supply or in other growth conditions. Sensitive detection systems for nutrient disorders in the field can facilitate this task, and are therefore, highly desirable
Senescence --- Pollution --- Abiotic stress --- Transport via xylem and phloem --- Biotic stress --- Nutrient availability in soil --- Nutrient assimilation --- Nutrient uptake --- Nutrient redistribution --- Nutrient contents in harvested plant products
Choose an application
This book was established after closing the special issue “Water and Ion Transport in Plants: New and Older Trends Meet Together” edited by Dr. Vadim Volkov, Professor Lars Wegner and Dr Mary Beilby as Guest Editors and Mr. Everett Zhu as Manager Editor. This book represents a small collection of bright papers related to water and ion transport in plants; these exceptionally wide topic cannot be covered within a single Book, so the aim was to recall the main concepts established for water and ion transport, to introduce new ideas, including controversial ones, and to link these ideas for generating directions of potential future research and progress. The goal was reached pointing to the main traditionally studied ion transport systems: ion channels, ion transporters, sodium and proton ATPases and macroscopic effects of their activity. Water transport in roots was shown in full complexity with its links to ion transport systems and aquaporins. Nonconventional use of silicon particles as addition to fertilizers is a subject of a paper within the collection. We hope that the Book will be a good reading with excellent examples of modern research; we are also assured that the Book will stimulate the future interest in water and ion transport in plants.
vacuole --- potassium --- homeostasis --- NHX --- auxin distribution --- PIN --- intracellular trafficking --- root pressure --- exudation --- xylem embolism --- mechanosensitive ion channels --- ion transporters --- aquaporins --- water transport --- silicon fertiliser --- wheat --- osmotic stress --- drought stress --- landraces --- genotypic variation --- Dunaliella --- cloning --- expression --- H+-ATPase --- microalgae --- Na+-ATPase --- qRT-PCR --- salt shock --- salt tolerance --- Suaeda altissima --- anion transporters --- chloride channel family --- CLC family --- halophytes --- molecular cloning --- SaCLCd --- SaCLCf --- SaCLCg
Choose an application
Soil, water, and nitrogen management are critical for crop productivity and quality in horticulture as well as for reducing negative impacts on ecosystems and greenhouse gas emissions. This Special Issue is a collection of seven important research works addressing solutions or strategies that can be implemented in order to use these three factors of production in a more sustainable way and to reduce inorganic nitrogen applications by considering the great importance of circular agriculture and the use of microorganisms. Aside from the relevance of the topics in this Special Issue, the studies included within it may trigger the development of new strategies for more sustainable and environmentally friendly intensive agriculture.
drip irrigation --- arbuscular mycorrhizal fungi --- water relations --- N and P status --- soil organic carbon --- osmoregulation --- sugar accumulation --- water stress --- xylem tissue --- mulching film --- Trichoderma --- Lactuca sativa L. --- nitrogen dose --- nutritional quality --- yield --- sustainability --- by-products --- recycle --- smart agriculture --- nitrogen efficiency --- soil organic matter --- acidic soil --- pH --- nitrogen --- nutrient uptake --- photosynthetic pigments --- antioxidant activity --- Spinacia oleracea --- hexavalent Cr --- photosynthesis --- phosphorus uptake --- Cr(VI) tissue --- leaf characteristics --- purslane --- soil contamination --- heavy metals --- Ginger (Zingiber officinale) --- biochar --- plant growth --- root morphological traits --- chlorophyll content --- soil enzymes --- n/a
Choose an application
Polyamines are small organic compounds found in all living organisms. In recent years, there have been many exciting advances in our understanding of plant polyamines, such as the determination of the biosynthetic and catabolic pathways of plant polyamines and the identification of the roles that plant polyamines play in cellular processes. This Special Issue contains six original research papers and three review articles, providing valuable insights and information for future polyamine-related research.
polyamine oxidase --- norspermidine --- thermospermine --- Selaginella lepidophylla --- Arabidopsis thaliana mutant --- polyamines --- spermidine --- nonsense-mediated decay --- no-go decay --- non-stop decay --- quality control --- translation --- copper amine oxidases --- H2O2 --- ROS --- ABA --- stomatal closure --- back conversion pathway --- polyamine catabolism --- stress response --- terminal catabolism pathway --- Ranunculus biternatus --- Ranunculus pseudotrullifolius --- Ranunculus moseleyi --- secondary metabolite variation --- amines --- quercetins --- natural populations --- environment --- redundancy --- sub-Antarctic plants --- Arabidopsis --- phloem --- rice --- spermine --- xylem --- nitrogen metabolism --- abiotic and biotic stress --- hydrogen peroxide --- antioxidant machinery --- heat shock proteins --- heat stress --- polyamine oxidases --- PA acetylation --- PA oxidation --- PA back-conversion --- putrescine --- tomato --- spermidine synthase --- fruit shape --- cell division --- cell expansion --- copper amine oxidase
Choose an application
Concerns have been raised with respect to the state of high-altitude and high-latitude treelines, as they are anticipated to undergo considerable modifications due to global changes, and especially due to climate warming. As high-elevation treelines are temperature-limited vegetation boundaries, they are considered to be sensitive to climate warming. As a consequence, in this future, warmer environment, an upward migration of treelines is expected because low air and root-zone temperatures constrain their regeneration and growth. Despite the ubiquity of climate warming, treeline advancement is not a worldwide phenomenon: some treelines have been advancing rapidly, others have responded sluggishly or have remained stable. This variation in responses is attributed to the potential interaction of a continuum of site-related factors that may lead to the occurrence of locally conditioned temperature patterns. Competition amongst species and below-ground resources have been suggested as additional factors explaining the variability in the movement of treelines. This Special Issue (book) is dedicated to the discussion of treeline responses to changing environmental conditions in different areas around the globe.
n/a --- tree seedling recruitment --- shrubline --- light quality --- higher altitude --- precipitation --- experimental rain exclusion --- Pinus cembra --- Changbai Mountain --- treeline dynamics --- fungal ecology --- thermal continentality --- tree regeneration --- elevational transect --- monitoring --- conifer shrub --- plant water availability --- permafrost --- foehn winds --- treeline --- Holocene --- nitrogen cycling --- carotenoids --- timberline --- 15N natural abundance --- spectrometer --- basal area increment --- palynology --- xylem embolism --- diversity --- elevational treeline --- European Alps --- temperature --- tree line --- winter stress --- photosynthetic pigments --- Pinus sibirica --- westerly winds --- relative air humidity --- ecosystem manipulation --- Larix decidua --- microsite --- polar treeline --- Central Austrian Alps --- Switzerland --- multi-stemmed growth form --- conifers --- forest edge --- history of treeline research --- soil drought --- dendroclimatology --- knowledge engineering --- Rocky Mountains --- apical control --- cloud --- postglacial --- alpine timberline --- space-for-time substitution --- climate change --- expert elicitation --- shoot elongation --- pit aspiration --- climate warming --- climate zone --- alpine treeline --- refilling --- Abies sibirica --- growth trend --- western Montana --- light quantity --- Picea abies --- Mediterranean climate --- forest climatology --- altitude --- environmental stress --- sub-Antarctic --- Erman’s birch --- photoinhibition --- tocopherol --- elevational gradients --- NDVI --- long-term trends --- sap flow --- peat --- tree seedlings --- Southern Ocean --- chlorophyll --- non-structural carbohydrates (NSCs) --- drought --- upward advance --- remote sensing data --- Erman's birch
Choose an application
Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.
silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS
Listing 1 - 7 of 7 |
Sort by
|