Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book is a collection of fundamental and applied research on the plant root response to environmental clues. In particular, the continued adaptation of both fine and coarse roots to modifications due to natural and anthropogenic causes were investigated from different viewpoints. Additionally, specific root traits were investigated as an optimal indicator of responses to the environment at the whole-plant level. Aspects such as an innovative methodological approach, the root morphology, gene expression, and primary and secondary metabolite concentrations were at the center of the investigations conducted in this collection.
TIFY --- Populus trichocarpa --- protein interaction network --- phytohormone treatment --- abiotic stress --- bioengineering --- Carpinus betulus --- Fagus orientalis --- tensile force --- Acer pseudoplatanus --- competition below ground --- extracellular enzymes --- Fagus sylvatica --- intraspecific and interspecific competition --- toot economic spectrum --- toot respiration --- tree root traits --- soil compaction --- N loading --- fine root --- root morphology --- ectomycorrhizal fungi --- forest gap --- forest management --- fine roots --- morphology --- lignin --- carbon --- nitrogen --- hydro-fluctuation zone --- Three Gorges Dam Reservoir --- winter submergence --- Taxodium distichum --- Salix matsudana --- organic acids --- phosphorus deficiency --- T.‘Zhongshanshan’ --- root foraging ability for phosphorus --- anchorage --- coarse root --- measurement method --- Pinus thunbergii --- root cross-sectional area --- root system architecture --- morphological attributes --- physiological analysis --- Populus euramericana --- reforestation --- n/a --- T.'Zhongshanshan'
Choose an application
We would like to provide the scientists a set of studies entitled "Study of the Influence of Abiotic and Biotic Stress Factors on Horticultural Plants". The reprint book contains 12 papers about the influence of the stress factors on the plant growth and soil parameters. Authors descripted the impact of the biotic and abiotic stress factors (i.e., high, and low temperature, salt, inorganic pollutants such as salts, heavy metals, phosphite, as well as irrigation) on the physiological, biochemical, and anatomical changes occurring in the plants at the cellular, tissue, organ, and whole plant level. The subject of these studies were different plant species, i.e., watermelon, lettuce, kale, potato, grapevine, hops, orchid, strawberry, and boxwood. The ideas of the papers can be divided into five topics: (1) achieving better quality of plant material for food production by changes made in the growth conditions, metabolic and genetic modifications; (2) increasing the plant resistance to environmental stresses by application of exogenous compounds of different chemical character; (3) reducing plant stress caused by anthropogenic activity applying nonmodified and genetically modified plants; (4) mitigating drought stress by irrigation; and 5) the positive effect of plant growth-promoting microorganisms on horticulture plants performance during drought stress.
abiotic stress --- strawberry --- companion plants --- phytoremediation --- cold stress --- cold-responsive genes --- anti-oxidants --- proline --- malondialdehyde --- hormone profiling --- 5-aminolevulinic acid --- Buxus megistophylla --- chlorophyll fast fluorescence characteristics --- mineral nutrition --- urban road greening --- orchid --- transformed ecosystems --- fly ash --- metals --- adaptive responses --- water exchange --- leaf mesostructure --- photosynthetic pigments --- photosynthesis --- plant introduction --- grapevine --- maximum daily shrinkage --- daily increase --- stem water potential --- leaf relative water content --- signal intensity --- Humulus lupulus L. --- soil porosity --- soil bulk density --- liming --- hop ridges --- Vitis spp. --- piwi cultivars --- disease-resistant varieties --- malic acid --- ripening --- fruit composition --- downy mildew --- phosphite stress --- antioxidant enzyme --- hydrogen peroxide --- root morphology --- potato --- genotypes --- Brassica oleracea var. acephala --- short-term cold stress --- phytochemicals --- pigments --- antioxidant enzymes --- chitosan (CTS) --- lettuce --- salinity --- soluble sugars --- climate change --- drought stress --- biopreparations --- plant stimulation --- plant growth-promoting microorganisms --- watermelon --- rootstock --- gene expression --- n/a
Choose an application
Horticultural research has been undergoing fundamental changes to improve crop plants as a result of the emergence of new biochemical and molecular techniques. In addition, integration of new technologies with the desire to develop more sustainable production systems has also spurred production level research. The highlighted Feature Papers here reflect the diversity of the types of research performed on horticultural plant species, spanning basic to applied studies, production systems, and postharvest studies, in addition to highlighting some critical issues facing horticultural plant species.
Olea europaea --- fat content --- fatty acid profile --- phenolic content --- volatile compounds --- hedgerow planting systems --- adaptive management --- conservation science --- Guam --- Mariana Islands --- Rota --- growing efficiency --- hydroponic nutrient solution --- raw material standardization --- soilless culture system --- system design --- brown rot --- inoculum application --- Monilinia --- phenotyping --- phenotypic instability --- stone fruit --- sweet cherry --- fruit growth --- hysteresis --- fruit maturation --- vapor pressure deficit (VPD) --- chilling requirement (CR) --- floral bud --- dormancy --- microsporogenesis --- relative growth rate (RGR) --- BBCH scale --- biological control --- cycad --- Cycas micronesica --- invasion biology --- gene silencing --- Huanglongbing --- sweet orange --- crop protection --- sustainability --- Capsicum annuum L. --- functional food --- pepper pre-breeding --- horticulture --- sensory analysis --- root development --- root morphology --- abiotic stress --- growth regulators --- biostimulants --- plant choice --- Capparis spinosa --- seed propagation --- vegetative propagation --- in vitro propagation --- Mediterranean basin --- crystals --- microscopy --- mycorrhizal fungi --- orchids --- suspensor --- n/a
Choose an application
The rising shortage of water resources in crop-producing regions worldwide and the need for irrigation optimisation call for sustainable water savings. The allocation of irrigation water will be an ever-increasing source of pressure because of vast agricultural demands under changing climatic conditions. Consequently, irrigation has to be closely linked with water-use efficiency with the aim of boosting productivity and improving food quality, singularly in those regions where problems of water shortages or collection and delivery are widespread. The present Special Issue (SI) showcases 19 original contributions, addressing water-use efficiency in the context of sustainable irrigation management to meet water scarcity conditions. These papers cover a wide range of subjects including (i) interaction mineral nutrition and irrigation in horticultural crops, (ii) sustainable irrigation in woody fruit crops, (iii) medicinal plants, (iv) industrial crops, and (v) other topics devoted to remote sensing techniques and crop water requirements, genotypes for drought tolerance, and agricultural management. The studies were carried out in both field and laboratory surveys, with modelling studies also being conducted, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this SI updates on and provides a relevant contribution for efficient saving water resources.
fruit size --- Manzanilla --- olive --- regulated deficit irrigation --- water potential --- water relation --- leaf area --- Manihot esculenta --- photosynthesis --- tuber --- water status --- antioxidant capacity --- bioactive compounds --- growth --- hydroxycinnamic acids --- hydroponics --- preformed plastic mulch film --- crop water productivity --- biodegradation --- crop productivity --- spray-on mulch --- water use efficiency --- almond cultivars --- crop physiological response --- irrigation water productivity --- nut yield --- drip irrigation --- silicon --- mineral nutrients --- oxidative stress --- osmolytes --- yield --- Zea mays --- ERP --- GIS --- internet of things --- precision agriculture --- quality --- environment --- water --- software --- platform --- web application --- crop coefficient --- drought stress --- evapotranspiration --- maize --- water productivity --- Prunus dulcis --- Vairo --- water stress --- sustained deficit irrigation --- quality markers --- leaf greenness index --- root morphology --- almond quality --- sustainability --- marketability --- semiarid Mediterranean environment --- root components --- yield components --- fruit quality --- deficit irrigation --- leaf area index --- harvest index --- photosynthetic rate --- transpiration rate --- greenhouse --- in vitro culture --- apple --- cherries --- midday stem water potential --- sap flow --- stomatal conductance --- FDR probes and daily fraction of intercepted photosynthetically active radiation --- abiotic stress --- Linum album Ky. ex Boiss. --- morphological properties --- phenology --- pigments --- diversity --- root length density --- root weight density --- root-shoot relationships --- benefit-cost ratio --- nitrogen --- root growth --- tomato --- water saving --- Jerusalem artichoke --- mineral fertilization --- irrigation --- diseases --- fungi --- crop suitability --- remote sensing --- ALES-Arid --- SEBAL --- landsat --- crop-water requirements --- smart farming --- crop-production functions --- food quality --- crop physiological response to drought scenarios
Choose an application
Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.
Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms
Listing 1 - 5 of 5 |
Sort by
|