Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The bioeconomy initially focused on resource substitution, including the production of biomass from various resources; its conversion, fractionation, and processing by means of biotechnology; and chemistry and process engineering towards the production and marketing of food, feed, fuel, and fibre. Nevertheless, although resource substitution is still considered important, the emphasis has been recently shifted to the biotechnological innovation perspective of the bioeconomy, in terms that ensure environmental sustainability. It is estimated that around one-third of the food produced for human consumption is wasted throughout the world, posing not only a sustainability problem related to food security but also a significant environmental problem. Food waste streams, mainly derived from fruits and vegetables, cereals, oilseeds, meat, dairy, and fish processing, have unavoidably attracted the interest of the scientific community as an abundant reservoir of complex carbohydrates, proteins, lipids, and functional compounds, which can be utilized as raw materials for added-value product formulations. This Special Issue focuses on innovative and emerging food and by-products processing methods for the sustainable transition to a bioeconomy era.
ash content --- sorghum milling waste --- lipids --- compost --- oleic acid --- microbial oil --- bioprocess development --- glucoamylase --- fatty acid methyl esters --- oleaginous yeast --- integrated biorefineries --- biorefineries --- hydrophobic substrates --- food processing --- hydrophilicity --- biodiesel --- films --- biodegradability --- clarified butter sediment waste --- submerged fungal fermentation --- blood plasma protein powder --- Morchella --- hydrogels --- heat-induced gelation --- sustainability --- bacterial cellulose --- bioprocesses --- circular economy --- olive waste --- prebiotics --- Rhodosporidium toruloides --- carotenoids --- waste valorization --- glucosamine --- food-processing --- size exclusion chromatography (SEC) --- bioeconomy --- food waste valorization --- whey proteins --- arabinoxylan --- Ostwald ripening --- emulsion --- emulsifier --- food biotechnology --- drying method --- polysaccharides --- food packaging --- texture --- lactose esters --- morel mushrooms --- circular-economy --- solid state fermentation --- bioactive compounds --- edible films --- hydrolysis --- Aspergillus awamori
Choose an application
This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.
n/a --- ionic conductivity --- cation mixing --- aliovalent substitution --- substituted barium indate --- thermal expansion --- impregnation --- Cr substitution --- chemical expansion --- ball milling --- lanthanum orthoniobate --- perovskite oxides --- thermogravimetric analysis --- Hebb-Wagner measurements --- samarium-doped ceria (SDC) --- impedance spectroscopy --- hydration --- nanocrystalline ceramics --- binary fluorides --- Ni-Cr-ferrite --- solid oxide fuel cells (SOFC) --- Mössbauer --- ceria --- current collector --- multifoil shape --- specific surface area of powders --- sol-gel --- molten salt synthesis --- Wulff shape --- relaxation experiments --- Ostwald ripening --- Solid Oxide Fuel Cells --- electronic conductivity --- proton ceramic fuel cells --- terbium orthoniobate --- water uptake --- high temperature proton conductors --- redox cycle --- metal foam --- protonic conductors --- protonic conductivity --- proton conductivity --- structure --- thin films --- e-beam physical vapor deposition --- TEC --- magnetic properties --- CTE --- coupled/decoupled ionic transport --- platelet morphology --- bismuth vanadate --- La-doped SrTiO3 --- Mössbauer
Choose an application
This book illustrates the exciting possibilities being opened up by X-ray computed tomography (CT) to follow the behavior of materials under conditions as close as possible to those encountered during their manufacture or in operation.The scientific chapters selected for this book describe results obtained using synchrotron or laboratory devices during in situ or ex situ experiments. They characterize microstructures across length scales ranging from tens of nanometers to a few tens of micrometers.In this collection, X-ray CT shines a light on the mechanical properties of engineering materials, such as aluminum or magnesium alloys, stainless steel, aluminum, polymer composites, or ceramic foam. In these experiments, X-ray CT is able to image and quantify the damage occurring during tensile, compression, indentation, or fatigue tests.Of course, X-ray CT can illuminate the structure and behavior of natural materials too. Here it is applied to bone or natural snow to study their mechanical behavior, as well as materials from the agri-food sector. Its versatility is exemplified by analyses of topics as diverse as the removal of olive oil from kitchen sponges by squeezing and rinsing, to the effect of temperature changes on the structure of ice cream.
in-situ X-ray computed tomography --- thermal-mechanical loading --- polymer bonded explosives --- mesoscale characterization --- structure evolution --- particle morphology --- heat treatment --- aluminum cast alloy --- mechanical properties --- Ostwald ripening --- nanotomography --- phase-contrast imaging --- tomographic reconstruction --- dynamic tomography --- motion compensation --- projection-based digital volume correlation --- X-ray μCT --- in-situ experiments --- flow cell --- alkaline manganese batteries --- X-ray tomography --- in operando --- in situ --- zinc powder --- laser powder bed fusion --- additive manufacturing --- in-situ imaging --- Ti6Al4V --- lattice structures --- mechanics --- corrosion --- biomaterial --- battery --- aluminum foams --- intermetallics --- finite element analysis --- damage --- polycrystal plasticity --- X-ray diffraction imaging --- topotomography --- in situ experiment --- finite element simulation --- lattice curvature --- rocking curve --- ice cream --- microstructure --- tomography --- ice crystals --- coarsening --- soft solids --- bone --- X-ray radiation --- tissue damage --- SR-microCT --- digital volume correlation --- temperature control --- electrochemical cell design --- batteries --- helical CT --- contrast agent --- high cycle fatigue (HCF) --- fibre break --- fibre tows --- Freeze Foaming --- in situ computed tomography --- non-destructive testing --- bioceramics --- aging --- crack initiation and propagation --- damage modes --- osteoporosis --- osteogenesis imperfecta --- porosity --- bone matrix quality --- micro-CT --- snow grains --- snow microstructure --- snow properties --- pore morphology --- voids --- fiber-reinforced concrete --- CT scan technology --- DIP software --- X-ray tomography (X-ray CT) --- 3D image analysis --- hydrogen embrittlement --- stainless steel
Listing 1 - 3 of 3 |
Sort by
|