Narrow your search

Library

FARO (66)

KU Leuven (66)

LUCA School of Arts (66)

Odisee (66)

Thomas More Kempen (66)

Thomas More Mechelen (66)

UCLL (66)

VIVES (66)

Vlaams Parlement (66)

ULiège (17)

More...

Resource type

book (66)


Language

English (66)


Year
From To Submit

2022 (17)

2021 (19)

2020 (13)

2019 (11)

2017 (1)

More...
Listing 1 - 10 of 66 << page
of 7
>>
Sort by

Book
Macrophages : celebrating 140 years of discovery
Author:
Year: 2022 Publisher: London, England : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Macrophages were first discovered in 1882 when Elia Metchnikoff recognized them as important phagocytic cells that can engulf any foreign material, including fungal spores. This discovery has proved to be a milestone in establishing the field of innate immunity. Macrophages are still ruling the area after 140 years of their discovery. This book explores the diverse role of macrophages in vertebrate immunity, parasitic, bacterial, and viral infections, regeneration, inflammation, and neurological diseases.


Book
Phagocytosis: Molecular Mechanisms and Physiological Implications
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Molecular Pathogenesis of Pneumococcus
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Streptococcus pneumoniae has been for decades the number one bacterial killer of children in the world. Although vaccination with pneumococcal vaccines [PCV7, PCV10, and PCV13 (children) or PPSV23 (adults)] has helped decrease the burden of pneumococcal disease (PD), mortality remains high. Therefore, pathogenesis studies are still key toward our understanding of PD and its control. The introduction of pneumococcal vaccines has also created a niche for vaccine-escape clones. Moreover, the rise of multi-drug resistant clones around the world has also posed a serious threat in recent years. The proposed special issue of Frontiers in Cellular and Infection Microbiology highlights many of the recent advances that have been made in pneumococcal pathogenesis, colonization and antibiotic resistance by groups in Latino America, Europe, and the USA.


Book
Secretion of cytokines and chemokines by innate immune cells
Authors: ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The release of cytokines, chemokines, and other immune-modulating mediators released from innate immune cells, including eosinophils, neutrophils, macrophages, dendritic cells, mast cells, and epithelial cells, is an important event in immunity. Cytokine synthesis and transportation occurs through the canonical protein trafficking pathway associated with endoplasmic reticulum and Golgi. How cytokines are released upon their exit from the trans-Golgi network varies enormously between cell types, and in many cells this has not yet been characterized. This issue delves into the plethora of cytokines released by innate immune cells, and where possible, shines light on specific mechanisms that regulate trafficking and release of Golgi-derived vesicles. Each cell type also shows varying degrees of dependency on microtubule organization and actin cytoskeleton remodeling for cytokine secretion. Understanding the mechanisms of cytokine secretion will reveal the inner workings of individual innate immune cell types, and allow identification of critical regulatory steps in cytokine release.


Book
Protective immune response to dengue virus infection and vaccines : perspectives from the field to the bench
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dengue is the most important mosquito-transmitted viral disease in humans. Half of the world population is at risk of infection, mostly in tropical and sub-tropical areas. The World Health Organization (WHO) estimates that 50 to 100 million infections occur yearly, with 50,000 to 100,000 deaths related to dengue, mainly in children. Recent estimates show higher numbers, up to three times more, with 390 million estimated dengue infections per year, among which 96 million apparent infections (Bhatt et al. 2013). Initially localized to South-East Asia, dengue virus (DENV) started its spread in Latin America in the 80s. Little is known about DENV spread in Africa, but multiple seroprevalence surveys over several years are now clearly showing endemic areas in East and West Africa (Brady et al. 2013). Finally, due to global warming and intense traveling there is a risk of global spread towards more temperate regions, and both US Key islands (FL) and southern Europe recently faced DENV outbreaks. There are currently no specific treatments or vaccines available. Even though several dengue vaccines are in the pipeline, clear correlates of protection are still lacking. The recent failure of the live-attenuated Sanofi vaccine Phase 2b trial (Sabchareon et al. 2013) and the lack of correlation between clinical protection and in vitro neutralization assays, clearly underlines the necessity to better understand the role of the different components of the immune system in protection against dengue virus infection and the requirement for the development of additional and/or improved predictive assays. The aim of this research topic is to provide novel data, opinions and literature reviews on the best immune correlates of protection and recent advances in the immune response to DENV infection that can allow rapid progress of dengue vaccines. Authors can choose to submit original research papers, reviews or opinions on pre-clinical or clinical observations that will help unify the field, with perspectives from epidemiology, virology, immunology and vaccine developers. This research topic will discuss different aspects of the protective immune response to DENV that can influence vaccine development. It will include a review of epidemiological data generated in the field, which will address spatio-temporal diversity of DENV epidemics, the importance of cross-reactive protection and of the time-interval between infections as a predictor of disease. It will further include a review of the role of both the innate and adaptive immunity in DENV infection control, and discuss the usefulness of new improved animal models in dissecting the role of each immunological compartment, which will help define new correlate of immune protection. New data concerning the DENV structure and anti-dengue antibody structure will address the necessity of improved neutralization assays. The ultimate test to prove vaccine efficacy and study immune correlates of protection in humans before large trials will open up the discussion on human DENV challenges using controlled attenuated viral strains. Finally, the role of vaccines, administered in flavi-immune populations, in the modification of future epidemics will also be approached and will include novel studies on mosquitoes infection thresholds.


Book
Targeting Monocytes/Macrophages to Treat Atherosclerotic Inflammation
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is by now widely recognized that atherosclerosis – with its burden of consequences in cerebro- and cardiovascular diseases – is just a chronic inflammatory process of the arterial wall. A very peculiar, complex and as yet still poorly understood process, upon which hundreds of scientists from several different fields are continuously concentrating their investigative efforts in search of possible leads to therapeutic approaches. Initiation of the disease is given by deposition of lipid in the intimal layers, resulting in endothelial activation and infiltration of blood-derived mononuclear cells. These mature into macrophages, become activated, express scavenger receptors such as SR-A and CD36 and ingest the oxidized lipoprotein accumulating in the lesion. Macrophages thus represent an obvious target for intervention, as they play a crucial role in the progression of the atherosclerotic inflammation. Studies have shown that hypercholesterolaemia can increase monocyte mobilisation from bone marrow into the circulation, and several chemokines and their receptors are involved in the recruitment of blood borne monocytes into the arterial wall. Monocyte-derived macrophages are capable of sustaining their local proliferation, but resident macrophages possibly also participate in progression of the disease. Remarkably, smooth muscle cells can acquire macrophage-like features during atherogenesis, including the ability to uptake lipid, thus becoming a significant proportion of the CD68+ so called ‘foam cells’. Lipid-laden macrophages induce extracellular matrix degradation, while lipid uptake eventually causes their death with formation of a necrotic core. The efficiency in clearance of dead cells by phagocytes (efferocytosis), can also be considered as a determinant of plaque vulnerability. An important feature of macrophages is their great plasticity and functional diversity in response to signals from the plaque microenvironment. Several such ‘signals’ (cholesterol, oxidative stress, hypoxia, cytokines…) can in fact modulate cell differentiation at transcriptional and epigenetic levels, thus altering the balance between the effector vs. reparative functions of macrophages. A whole gamut of specific subsets are thus originated, which appear to be simultaneously present in lesions with proportions that vary according to their location, the disease stage, and the presence of additional cell types such as e.g. dendritic cells. The result is a multiplicity of potential pharmacological targets, representing a major obstacle for the devisement of therapeutic strategies. Experimental approaches have been attempted in diverse directions: e.g. modulating the macrophage phenotype to an anti-inflammatory and resolving state, or blocking pro-inflammatory cytokines that macrophages produce, or alternatively enhancing efferocytosis in order to favour the resolution of inflammation and stabilization of plaques. Blocking monocyte recruitment was proposed in order to hinder the initial steps of atherogenesis. Other treatments were aimed to inhibiting local proliferation of pro-inflammatory macrophages. Specific targeting of macrophages has however to date not yet provided significant, translational results. The present Research Topic collects articles to help unravel the complexity of macrophage behaviour in atherosclerosis and identify innovative pharmacological approaches.


Book
Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment
Authors: ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Adverse Reactions to Biomaterials: State of the Art in Biomaterial Risk Assessment, Immunomodulation and In Vitro Models for Biomaterial Testing
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Dendritic cell and macrophage nomenclature and classification
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mononuclear phagocyte system (MPS) comprises dendritic cells (DCs), monocytes and macrophages (MØs) that together play crucial roles in tissue immunity and homeostasis, but also contribute to a broad spectrum of pathologies. They are thus attractive therapeutic targets for immune therapy. However, the distinction between DCs, monocytes and MØ subpopulations has been a matter of controversy and the current nomenclature has been a confounding factor. DCs are remarkably heterogeneous and consist of multiple subsets traditionally defined by their expression of various surface markers. While markers are important to define various populations of the MPS, they do not specifically define the intrinsic nature of a cell population and do not always segregate a bona fide cell type of relative homogeneity. Markers are redundant, or simply define distinct activation states within one subset rather than independent subpopulations. One example are the steady-state CD11b+ DCs which are often not distinguished from monocytes, monocyte-derived cells, and macrophages due to their overlapping phenotype. Lastly, monocyte fate during inflammation results in cells bearing the phenotypic and functional features of both DCs and MØs significantly adding to the confusion. In fact, depending on the context of the study and the focus of the laboratory, a monocyte-derived cell will be either be called "monocyte-derived DCs" or "macrophages". Because the names we give to cells are often associated with a functional connotation, this is much more than simple semantics. The "name" we give to a population fundamentally changes the perception of its biology and can impact on research design and interpretation. Recent evidence in the ontogeny and transcriptional regulation of DCs and MØs, combined with the identification of DC- and MØ-specific markers has dramatically changed our understanding of their interrelationship in the steady state and inflammation. In steady state, DCs are constantly replaced by circulating blood precursors that arise from committed progenitors in the bone marrow. Similarly, some MØ populations are also constantly replaced by circulating blood monocytes. However, others tissue MØs are derived from embryonic precursors, are seeded before birth and maintain themselves in adults by self-renewal. In inflammation, such differentiation pathways are fundamentally changed and unique monocyte-derived inflammatory cells are generated. Current DC, monocyte and MØ nomenclature does not take into account these new developments and as a consequence is quite confusing. We believe that the field is in need of a fresh view on this topic as well as an upfront debate on DC and MØ nomenclature. Our aim is to bring expert junior and senior scientists to revisit this topic in light of these recent developments. This Research Topic will cover all aspects of DC, monocyte and MØ biology including development, transcriptional regulation, functional specializations, in lymphoid and non-lymphoid tissues, and in both human and mouse models. Given the central position of DCs, monocytes and MØs in tissue homeostasis, immunity and disease, this topic should be of interest to a large spectrum of the biomedical community.


Book
CD4+ T cell differentiation in infection : amendments to the Th1/Th2 axiom
Authors: --- ---
ISBN: 9782889195657 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

CD4+ T lymphocytes play an essential role in host defense against bacterial, parasitic and viral infections. During infection, under the influence of intrinsic signals received through peptide-MHC/TCR interactions and extrinsic signals provided by pathogen-conditioned dendritic and other accessory cells, CD4+ T cells proliferate and differentiate into specialized T helper (Th) effectors, which produce distinct sets of cytokines tailored to combat a specific class of microbes. The concept of CD4+ T cell multi-functionality was developed after the seminal discovery of Th1 and Th2 cells nearly 30 years ago. Although the Th1/Th2 paradigm has successfully withstood the test of time, in the past decade additional Th subsets (Th17, Tfh, Th22, Th9) have been identified. Similarly, single cell analyses of cytokines and master transcriptional factors have revealed that, at the population level, CD4+ T cell responses are far more heterogeneous than initially anticipated. While some of the checkpoints in Th cell specification have been identified, recent studies of transcriptional and epigenetic regulation have uncovered a significant flexibility during the course CD4+ T lymphocyte polarization. In addition, Th cells expressing cytokines with counteracting functions, as a measure of self-regulation, display yet another level of diversity. Understanding the mechanisms that control the balance between stability vs. plasticity of Th effectors both at the time of initiation of immune response and during development of CD4 T cell memory is critical for the rational design of better vaccines and new immunotherapeutic strategies. This research topic will cover current views on Th cell development, with a focus on the mechanisms that govern differentiation, function and regulation of effector Th cells in the context of microbial infections.

Listing 1 - 10 of 66 << page
of 7
>>
Sort by