Listing 1 - 10 of 57 | << page >> |
Sort by
|
Choose an application
Lignocellulose is the only renewable carbon source that can help replace oil-based chemicals and materials, in the process fighting global warming. However, because of its chemical and structural complexity, lignocellulose transformation into advanced products requires a better understanding of its composition and of its architecture at different scales, as well as a combination of physical, biological, and chemical processes, in order to render this transformation efficient and economically competitive. Tremendous efforts continue to be made toward the production of ethanol as a biofuel from various lignocellulosic feedstocks. Furthermore, recent successes have been achieved in extracting fibers to prepare composite materials that can compete with plastic fabrics. Importantly, lignocellulose chemistry can bring to the market original and complex chemicals that can lead to new applications, in particular when exploiting aromatic molecules or oligosaccharides from lignocellulose to produce solvents, surfactants, plasticizers, functional additives for food/feed/cosmetics, drugs, monomers, and polymers. In addition to this broad range of molecular products, fibers and particles fractionated from the lignocellulosic biomass are increasingly used to elaborate bio-based composite materials.
biomass --- lignocellulose --- cellulose --- hemicellulose --- lignin --- biochemicals --- biomaterials --- catalysis
Choose an application
Lignin - Trends and Applications consists of 11 chapters related to the lignin structure, modification, depolymerization, degradation process, computational modeling, and applications. This is a useful book for readers from diverse areas, such as physics, chemistry, biology, materials science, and engineering. It is expected that this book may expand the reader's knowledge about this complex natural polymer.
Lignin. --- Lignins --- Crosslinked polymers --- Plant polymers --- Wood --- Chemistry --- Physical Sciences --- Engineering and Technology --- Materials Science --- Biochemistry --- Polymers
Choose an application
Moving towards a sustainable and green economy requires the use of renewable resources for the production of fuels, chemicals, and materials. In such a scenario, the use of lignocellulosic biomass and waste streams plays an important role, as it consists of abundant renewable resources. The complex nature of lignocellulosic biomass dictates the use of a pretreatment process prior to any further processing. Traditional methods of biomass pretreatment fail to recover cellulose, hemicellulose, and lignin in clean streams. It has been recognized that the efficient use of all the main fractions of lignocellulosic biomass (cellulose, hemicellulose, and lignin) is an important step towards a financially sustainable biomass biorefinery. In this context, switching from biomass pretreatment to biomass fractionation can offer a sustainable solution to recover relatively clean streams of cellulose, hemicellulose, and lignin. This Special issue aims at exploring the most advanced solutions in biomass and waste pretreatment and fractionation techniques, together with novel (thermo)chemical and biochemical processes for the conversion of fractionated cellulose, hemicellulose and lignin to bioenergy, bio-based chemicals, and biomaterials, including the application of such products (i.e., use of biochar for filtration and metallurgical processes), as well as recent developments in kinetic, thermodynamic, and numeric modeling of conversion processes. The scope of this Special Issue will also cover progress in advanced measuring methods and techniques used in the characterization of biomass, waste, and products.
Acacia tortilis --- biofuel --- biomass --- pine dust --- pyrolysis --- Napier grass --- bioethanol --- biomass fractionation --- enzyme hydrolysis --- acid pretreatment --- alkali pretreatment --- microwave-assisted pretreatment --- pretreatment parameters --- enzymatic hydrolysis --- glucose --- xylose --- lignocellulosic sugars --- microbial lipid --- olive mill wastewater --- Cryptococcus curvatus --- Lipomyces starkeyi --- lignin --- organosolv fractionation --- TGA --- 31P NMR --- HSQC --- heat treatment --- charcoal --- electrical resistivity --- coal --- coke --- high-temperature treatment --- organosolv --- Kraft lignin --- etherification --- lignin functionalization --- thermoplastics --- oxidative lignin upgrade --- catalytic lignin oxidation --- vanadate --- molybdate --- ionosolv --- biomimetic --- bio-based reductant --- ferroalloy industry --- kiln --- 2nd generation sugars --- lignocellulose --- hydrolyzate --- biorefinery --- furfural --- hydroxymethylfurfural --- bioeconomy --- life cycle assessment --- sustainable biomass growth --- mining --- metallurgical coke --- n/a
Choose an application
Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough technologies are still required to overcome hurdles in developing sustainable biorefineries. In recent years, new biorefinery concepts including a lignin-first approach and a closed-loop biorefinery have been introduced to tackle technoeconomic challenges. Furthermore, researchers have advanced the development of new technologies which enable the utilization of biomass components for sustainable materials. It is now apparent that advanced processes are essential for ensuring the success of future biorefineries. This book presents processes for biomass fractionation, lignin valorization, and sugar conversion or introduces new bioproducts (chemicals and materials) from renewable resources, addressing the current status, technical/technoeconomic challenges, and new strategies.
Biomass --- two-step pretreatment --- steam explosion --- organosolv treatment --- empty fruit bunch --- pinewood --- green pretreatment --- enzymatic hydrolysis --- lignin structural features --- poplar --- FTIR --- contaminants --- by-products --- lignin valorization --- lignin applications --- 3D printing --- electrochemical material --- medical application --- drying effect --- cellulose --- hornification --- porosity --- bioethanol --- economic analysis --- hand sanitiser --- oil palm empty fruit bunch (OPEFB) --- simultaneous saccharification and fermentation --- SuperPro Designer® --- renewable fuel --- high-density fuel --- α-pinene dimerization --- turpentine --- stannic chloride molten salt hydrates --- xylooligosaccharides --- autohydrolysis --- sweet sorghum bagasse --- isobutanol --- biorefinery --- metabolic engineering --- biomass utilization --- aqueous biphasic system --- dilute acid hydrolysate --- furfural production --- solvent extraction --- response surface methodology --- biomass fractionation --- bioproducts
Choose an application
Networks of coordinated interactions among biological entities govern a myriad of biological functions that span a wide range of both length and time scales-from ecosystems to individual cells and from years to milliseconds. For these networks, the concept "the whole is greater than the sum of its parts" applies as a norm rather than an exception. Meanwhile, continued advances in molecular biology and high-throughput technology have enabled a broad and systematic interrogation of whole-cell networks, allowing the investigation of biological processes and functions at unprecedented breadth and resolution-even down to the single-cell level. The explosion of biological data, especially molecular-level intracellular data, necessitates new paradigms for unraveling the complexity of biological networks and for understanding how biological functions emerge from such networks. These paradigms introduce new challenges related to the analysis of networks in which quantitative approaches such as machine learning and mathematical modeling play an indispensable role. The Special Issue on "Biological Networks" showcases advances in the development and application of in silico network modeling and analysis of biological systems.
Pathway crosstalk --- Alzheimer’s disease --- Bioenergy crops --- Model identification --- Metabolic networks --- Host–pathogen interactions --- Single cell --- Parameter sensitivity --- Tuberculosis --- Multivariate statistical analysis --- Systems biology --- Biological networks --- Mathematical modeling --- Lignin biosynthesis --- Design of experiments
Choose an application
Recently, there has been a growing awareness of the need to make better use of natural resources. Hence, the utilization of biomass has led to so-called biorefinery, consisting of the fractionation or separation of the different components of the lignocellulosic materials in order to achieve a total utilization of the same, and not only of the cellulosic fraction for paper production. The use of plant biomass as a basic raw material implies a shift from an economy based on the exploitation of non-renewable fossil fuels, with limited reserves or with regeneration cycles far below the rates of exploitation, to a bioeconomy based on the use of renewable organic natural resources, with balanced regeneration and extraction cycles. To make this change, profound readjustments in existing technologies are necessary, as well as the application of new approaches in research, development, and production."Biorefinery" is the term used to describe the technology for the fractionation of plant biomass into energy, chemicals, and consumer goods. The future generation of biorefinery will include treatments, leading to high-value-added compounds. The use of green chemistry technologies and principles in biorefineries, such as solvent and reagent recovery and the minimization of effluent and gas emissions, is essential to define an economically and environmentally sustainable process.In particular, the biorefinery of lignocellulosic materials to produce biofuels, chemicals and materials is presented as a solid alternative to the current petrochemical platform and a possible solution to the accumulation of greenhouse gases.
lignocellulosic biomass --- solid-state fermentation --- enzymatic hydrolysis --- aerated bioreactor --- Aspergillus oryzae --- lignin --- lignocellulose --- aromatics --- biobased --- epoxy --- fatty acid --- biopolymers --- biobased materials --- biorenewable --- bio-based filament --- 3D printing --- sugarcane bagasse pulp --- barley straw --- composite --- flexural strength --- biobased polyethylene --- nanocellulose --- β-cyclodextrin --- cryogels --- films --- biomaterials --- cellulose --- dialdehyde cellulose --- organosilane chemistry --- 29Si NMR --- solid state NMR --- silanization --- lignocellulose valorization --- ‘lignin-first’ --- reductive catalytic fractionation --- lignocellulose nanofibers --- horticultural residues --- paperboard --- recycling --- biosurfactants --- enzymatic saccharification --- fermentation --- quinoa saponins --- steam-pretreated spruce --- lignocellulosic material --- xylose --- furfural --- iron chloride --- microwave reactor --- biorefinery --- electrosynthesis --- biomass --- carbohydrate --- saccharides --- electro-oxidation --- electroreduction --- residue --- agro-industry --- high-value products --- banana --- torrefaction --- Jerusalem artichoke --- biofuel --- energy crops --- agiculture --- micro-fibrillated cellulose --- formaldehyde adhesives --- wood-based panels --- kraft lignin --- adsorbent material --- copper adsorption --- H2S adsorption --- H2S removal --- n/a --- 'lignin-first'
Choose an application
In this book, 15 papers, covering some of the latest advances in pretreatment and bioconversion of crop residues, are presented. Research results dealing with wheat straw, corn stover, sweet sorghum bagasse, hazelnut shells, oil palm empty fruit bunch, olive tree pruning biomass, and other residues of crop harvest and processing are discussed. Pretreatment methods, such as auto-catalyzed and acid-catalyzed hydrothermal processing, steaming, alkaline methods, and different organosolv approaches, are reported. Bioconversion with enzymes and microbes for producing fermentable sugars, xylitol, and biomethane are also included.
oil palm empty fruit bunch --- lignin recovery --- lignin purity --- digestible cellulose --- organosolv pretreatment --- Ferulic acid --- Feruloyl esterase --- Xylanase --- Synergy --- Xylo-oligosaccharides --- olive tree harvest --- lignocellulose nanofibers --- circular economy --- valorization --- pretreatments --- high-pressure homogenization --- biorefinery --- hazelnut shells --- hydrothermal pretreatment --- hemicelluloses --- oligosaccharides --- antioxidant activity --- corn stover --- pretreatment --- steam refining --- enzymatic hydrolysis --- alkaline extraction --- lignin --- organosolv --- fractionation --- characterization --- Paulownia --- alkaline pretreatment --- enzyme cocktail --- glycosyl hydrolase --- termite metagenome derived enzymes --- sugarcane bagasse --- soybean husks --- palm empty fruit bunches --- recombinant enzymes --- techno-economic study --- castor plant --- biodiesel --- bioethanol --- alkali pretreatment --- delignification --- cellulose --- cellulose-containing materials --- Penicillium verruculosum --- biomass --- enzyme --- consolidated bioprocessing --- wheat bran --- rice straw --- acidic hydrolysis --- fermentation --- aeration --- detoxification --- wheat straw --- bioconversion inhibitors --- ethanolic fermentation --- barley crop residue --- biochemical methane potential --- material degradability --- anaerobic indicators --- biogas feasibility --- biogas emissions --- n/a
Choose an application
Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.
pullulan --- biopolymers --- exopolysaccharides --- biodegradation --- biocompatibility --- poly(lactic acid) --- poly(butylene succinate) --- chitin nanofibrils --- starch --- skin compatibility --- anti-microbial --- poly(hydroxyalkanoate) --- biopolyesters --- beauty masks --- releasing --- skin compatible --- polyhydroxyalkanotes --- sugarcane molasses --- antibacterial materials --- essential oils --- coating --- poly(lactide) --- chitin–lignin nanocomplex --- grafting from --- lactide oligomers --- platelet-rich fibrin --- wound healing --- skin wounds --- wound dressing --- hyperspectral imaging --- principal component analysis --- spectroscopy --- chitosan --- partial least squares regression --- nir --- actives substances --- cn-nl/ga --- skin --- antifouling --- antimicrobial --- antiviral --- electrospinning --- breast implant --- ear prosthesis --- biomedical device --- chronic wound --- biopolymer --- bio-based --- surface modification --- nanolignin --- electrospray --- anti-inflammatory --- blends --- PLA --- PHBV --- nanocomposite --- tissue engineering --- biodegradable --- nanofiber --- n/a --- chitin-lignin nanocomplex
Choose an application
This Special Issue of Polymers is a collection of 11 original high-quality scientific contributions on basic and applied research in the field of wood science and technology, and provides good examples of the recent challenges related to the production and application of wood and wood-based materials. The Special Issue includes individual papers concerned with the enhancement of the performance and technological properties of wood composites, above all plywood, as well as with the ignition and combustion of wood and wood composites in monitoring and evaluating these processes on state-of-the-art equipment, and monitoring chemical changes in wood and wood adhesives and composites. The topic of the Special Issue has clearly resonated with the world’s scientific community and the responses have come from traditionally strong wood research centers in Europe and Asia.
plywood --- veneer 3D moldability --- natural fiber reinforcement --- wood–plastic composite (WPC) --- silicone --- mechanical properties --- cytotoxicity --- casting --- ageing --- veneer --- laser-cut --- additive manufacturing --- wood composite --- birch plywood --- molecular weight --- phenol-formaldehyde resin --- soft-rot --- weathering stability --- wood-based panels --- high-density fiberboards --- bio-adhesives --- ammonium lignosulfonate --- zero-formaldehyde emission --- tropical wood --- non-isothermal thermogravimetry --- deconvolution of thermogravimetry runs --- cone calorimetry testing --- heat-release rate --- OSB --- heat flux density --- ignition time --- weight loss --- meranti --- padauk --- merbau --- thermal treatment --- wood lignin --- eco-panel --- small ignition initiator --- straw --- relative burning rate --- fire properties --- spruce wood --- cellulose --- hemicelluloses --- lignin --- extractives --- time of storage --- fiber characteristics --- torrefied wood --- fuel --- combustion --- heat release rate --- n/a --- wood-plastic composite (WPC)
Choose an application
This book provides important aspects of sustainable degradation of lignocellulosic biomass which has a pivotal role for the economic production of several value-added products and biofuels with safe environment. Different pretreatment techniques and enzymatic hydrolysis process along with the characterization of cell wall components have been discussed broadly. The following features of this book attribute its distinctiveness: This book comprehensively covers the improvement in methodologies for the biomass pretreatment, hemicellulose and cellulose breakdown into fermentable sugars, the analytical methods for biomass characterization, and bioconversion of cellulosics into biofuels. In addition, mechanistic analysis of biomass pretreatment and enzymatic hydrolysis have been discussed in details, highlighting key factors influencing these processes at industrial scale.
Biomass conversion. --- Biomass energy. --- Lignocellulose. --- Ligno-cellulose --- Lignocellulosics --- Cellulose --- Lignin --- Bio-energy (Biomass energy) --- Bioenergy (Biomass energy) --- Biofuels --- Biological fuels --- Energy, Biomass --- Microbial energy conversion --- Energy conversion --- Fuel --- Microbial fuel cells --- Refuse as fuel --- Waste products as fuel --- Microbial biotechnology --- Engineering --- Physical Sciences --- Engineering and Technology --- Bioresource Engineering --- Energy Engineering --- Biomass as fuel --- Renewable fuels --- Renewable energy sources
Listing 1 - 10 of 57 | << page >> |
Sort by
|