Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book compiles four review articles and four research papers that highlight recent developments in the field of peptide nucleic acid (PNA) chemistry and biomedicine. The review articles encompass a variety of fields related to PNA, emphasizing the versatility of this DNA mimic. Two excellent reviews detail the use of PNA for molecular diagnostics of miRNAs and genetic point mutations (SNPs). Another review provides a comprehensive analysis of the various approaches for gene editing using chemically modified PNA molecules. Lastly, PNA molecules are elegantly described as effective (antisense) antimicrobial agents in the final review. The high binding affinity of PNA to complementary DNA and RNA is highlighted in three research articles. Two articles show how PNA molecules act as splice modulating and RNA masking molecules, separately. In another contribution, the high affinity and achiral characteristics of PNAs are used to developed a stable L-DNA-based catalytic hairpin assembly. Lastly, chemically-modified PNA molecules are shown to be superior probes for SNP detection. Altogether, these studies illustrate how PNA molecules may be useful for a variety of biomedical applications as either therapeutic or diagnostic agents.
RNA structure --- strand invasion --- antisense --- PNA --- exon skipping --- exon inclusion --- oligonucleotides --- peptide nucleic acid (PNA) --- antibacterials --- RNA --- PNA transporters --- conjugates --- bacterial resistance --- peptide nucleic acids --- triplex --- gene editing --- structure --- recombination --- repair --- nanoparticles --- β-thalassemia --- cystic fibrosis --- peptide nucleic acid --- tolane --- single nucleotide polymorphism --- influenza virus --- drug resistance --- peptide nucleic acids (PNAs) --- single-nucleotide polymorphism (SNP) --- polymerase chain reaction (PCR) --- cancer. --- catalytic hairpin assembly (CHA) --- strand-displacement reaction --- l-DNA --- microRNA --- fluorescence --- templated reactions --- light-triggered --- electrochemical biosensors --- colorimetric detection --- Peptide nucleic acids --- PNA-masking --- microRNAs --- miR-145-5p --- miRNA targeting --- delivery --- CFTR --- n/a
Choose an application
Recently, microfluidic, nanofluidic and lab-on-a-chip devices have gained particular attention in biomedical applications. Due to their advantages, such as miniaturization, versatility, ease of use, cost-effectiveness, and the potential to replace animal models for drug development and testing, these devices hold tremendous potential to revolutionize the research of more effective treatments for several diseases that threaten human life. With integrated biosensors, these devices allow the development and design of micro- and nanoparticles to be studied in detail, modelling human physiology, investigating the molecular and cellular mechanisms underlying disease formation and progression, and gaining insights into the performance and long-term effects of responsive drug delivery nanocarriers. This Special Issue gathered research papers, and review articles focusing on novel microfluidic, nanofluidic and lab-on-a-chip devices for biomedical applications, addressing all steps related to fabrication, biosensor integration and development, characterization, numerical simulations and validation of the devices, optimization and, the translation of these devices from research labs to industry settings.
Medicine --- protein biomarker --- microarray --- microfluidic cassette --- multiplex measurement --- immunoassay --- point-of-care testing --- microfluidic device --- small intestine --- ex vivo --- histology --- embedded resin --- sectioning --- peptide biosensor --- lab-on-a-chip --- label-free detection --- peptide aptamers --- protein biomarkers --- microfluidic biochip --- troponin T --- computational simulations --- drug discovery --- organ-on-a-chip --- microfluidic devices --- preclinical models --- numerical simulations --- automation --- non-enzymatic --- DNA amplification --- L-DNA --- microfluidic --- fluorescence --- paper microfluidics --- sweat --- sensing --- hydrogels --- lactate --- osmotic pumping --- evaporation --- capillary --- wicking --- biochemical assay --- microfluidics --- cell trap --- RBC --- evolutionary algorithm --- generative design --- artificial intelligence --- organ-on-chip --- liver-on-chip --- liver disease --- multi-level microfluidic device --- live cell imaging --- long-term microscopy imaging --- focus drifting --- immersion oil viscosity --- bacterial population dynamics --- single-cell studies --- E. coli --- mother machine --- computational fluid dynamics --- cancer-on-chip --- xenograft --- colorectal cancer --- pharmacodynamics --- pharmacokinetics --- drug efficacy --- oxaliplatin --- microfabrication --- microphysiological system --- biophysical stimuli --- biochemical stimuli --- in vitro cell culture --- cortical neurons --- hippocampal neurons --- electrical stimulation --- Micro-Electrode Arrays --- engineered neuronal networks --- polydimethylsiloxane --- microchannels --- in vivo micro bioreactor --- additive manufacturing --- poly-(ethylene glycol)-diacrylate --- biocompatibility --- COVID-19 --- diagnosis --- image analysis --- PCR --- SARS-CoV-2 --- n/a
Listing 1 - 2 of 2 |
Sort by
|