Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

Vlaams Parlement (4)

UGent (3)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (1)

2020 (1)

2019 (1)

2017 (1)

Listing 1 - 4 of 4
Sort by

Book
Finite Difference Computing with PDEs : A Modern Software Approach
Authors: ---
ISBN: 3319554565 3319554557 Year: 2017 Publisher: Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.


Book
Microwave Imaging and Electromagnetic Inverse Scattering Problems
Authors: ---
ISBN: 3039219510 3039219502 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microwave imaging techniques allow for the development of systems that are able to inspect, identify, and characterize in a noninvasive fashion under different scenarios, ranging from biomedical to subsurface diagnostics as well as from surveillance and security applications to nondestructive evaluation. Such great opportunities, though, are actually severely limited by difficulties arising from the solution of the underlying inverse scattering problem. As a result, ongoing research efforts in this area are devoted to developing inversion strategies and experimental apparatus so that they are as reliable and accurate as possible with respect to reconstruction capabilities and resolution performance, respectively. The intent of this Special Issue is to present the experiences of leading scientists in the electromagnetic inverse scattering community, as well as to serve as an assessment tool for people who are new to the area of microwave imaging and electromagnetic inverse scattering problems.


Book
Applied Mathematics and Computational Physics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.

Keywords

radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding


Book
Advanced Numerical Methods in Applied Sciences
Authors: ---
ISBN: 3038976679 3038976660 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Keywords

structured matrices --- numerical methods --- time fractional differential equations --- hierarchical splines --- finite difference methods --- null-space --- highly oscillatory problems --- stochastic Volterra integral equations --- displacement rank --- constrained Hamiltonian problems --- hyperbolic partial differential equations --- higher-order finite element methods --- continuous geometric average --- spectral (eigenvalue) and singular value distributions --- generalized locally Toeplitz sequences --- Volterra integro–differential equations --- B-spline --- discontinuous Galerkin methods --- adaptive methods --- Cholesky factorization --- energy-conserving methods --- order --- collocation method --- Poisson problems --- time harmonic Maxwell’s equations and magnetostatic problems --- tree --- multistep methods --- stochastic differential equations --- optimal basis --- finite difference method --- elementary differential --- gradient system --- curl–curl operator --- conservative problems --- line integral methods --- stochastic multistep methods --- Hamiltonian Boundary Value Methods --- limited memory --- boundary element method --- convergence --- analytical solution --- preconditioners --- asymptotic stability --- collocation methods --- histogram specification --- local refinement --- Runge–Kutta --- edge-preserving smoothing --- numerical analysis --- THB-splines --- BS methods --- barrier options --- stump --- shock waves and discontinuities --- mean-square stability --- Volterra integral equations --- high order discontinuous Galerkin finite element schemes --- B-splines --- vectorization and parallelization --- initial value problems --- one-step methods --- scientific computing --- fractional derivative --- linear systems --- Hamiltonian problems --- low rank completion --- ordinary differential equations --- mixed-index problems --- edge-histogram --- Hamiltonian PDEs --- matrix ODEs --- HBVMs --- floating strike Asian options --- Hermite–Obreshkov methods --- generalized Schur algorithm --- Galerkin method --- symplecticity --- high performance computing --- isogeometric analysis --- discretization of systems of differential equations

Listing 1 - 4 of 4
Sort by