Narrow your search

Library

FARO (17)

KU Leuven (17)

LUCA School of Arts (17)

Odisee (17)

Thomas More Kempen (17)

Thomas More Mechelen (17)

UCLL (17)

VIVES (17)

Vlaams Parlement (17)

ULB (5)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2022 (3)

2021 (6)

2020 (2)

2019 (2)

2018 (1)

More...
Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Evolution and Functional Mechanisms of Plant Disease Resistance
Authors: --- --- --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Advances in Ascochyta Research
Authors: --- --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Legume crops provide an excellent source of high quality plant protein and have a key role in arable crop rotations reducing the need for fertilizer application and acting as break-crops. However, these crops are affected by a number of foliar and root diseases, being ascochyta blights the most important group of diseases worldwide. Ascochyta blights are incited by different pathogens in the various legumes. A number of control strategies have been developed including resistance breeding, cultural practices and chemical control. However, only marginal successes have been achieved in most instances, most control methods being uneconomical, hard to achieve or resulting in incomplete protection. This eBook covers recent advances in co-operative research on these diseases, from agronomy to breeding, covering traditional and modern genomic methodologies.


Book
Management of Fusarium Species and their Mycotoxins in Cereal Food and Feed
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Health and safety of food and feed are the most important criteria for their quality. The quality of feed is in turn important for animal health, the environment and for the safety of food from animal origin. Fungi belonging to the Fusarium genus are widespread in crops causing plant diseases and producing toxic metabolites. Fusarium species can colonize plants during their growth on the field and cause serious damage in terms of yield and quality of harvested grains. One of the most important fungal diseases of wheat and other cereals in the world is Fusarium head blight caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum and others. In addition, these fungi produce mycotoxins, contaminating food and feed. The most important Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins, primarily because of their prevalence, but also because of the toxic effect to humans and animals. However, these fungi produce also other mycotoxins such as moniliformin, beauvericin, enniantin or fusarins. Food and feed can be contaminated with mycotoxins at various stages in the production chain resulting in serious problems with health, safety and economic losses. It is estimated that 25% of the crop in the world each year are contaminated with these metabolites, the problem affects both industrialized countries and developing countries. The aim of this Research Topic of Frontiers in Microbiology is to publish state of the art research about occurrence and genomics of Fusarium species and their mycotoxins in the whole food and feed chain starting from the crops as well as implications for health and economic aspects. This research topic highlights the current knowledge on the plant diseases caused by Fusarium fungi as well as all aspects of Fusarium mycotoxin contamination of crops, food and feed, taking into account decontamination methods.


Book
Advances in farm animal genomic resources
Authors: --- --- --- --- --- et al.
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The history of livestock started with the domestication of their wild ancestors: a restricted number of species allowed to be tamed and entered a symbiotic relationship with humans. In exchange for food, shelter and protection, they provided us with meat, eggs, hides, wool and draught power, thus contributing considerably to our economic and cultural development. Depending on the species, domestication took place in different areas and periods. After domestication, livestock spread over all inhabited regions of the earth, accompanying human migrations and becoming also trade objects. This required an adaptation to different climates and varying styles of husbandry and resulted in an enormous phenotypic diversity. Approximately 200 years ago, the situation started to change with the rise of the concept of breed. Animals were selected for the same visible characteristics, and crossing with different phenotypes was reduced. This resulted in the formation of different breeds, mostly genetically isolated from other populations. A few decades ago, selection pressure was increased again with intensive production focusing on a limited range of types and a subsequent loss of genetic diversity. For short-term economic reasons, farmers have abandoned traditional breeds. As a consequence, during the 20th century, at least 28% of farm animal breeds became extinct, rare or endangered. The situation is alarming in developing countries, where native breeds adapted to local environments and diseases are being replaced by industrial breeds. In the most marginal areas, farm animals are considered to be essential for viable land use and, in the developing world, a major pathway out of poverty. Historic documentation from the period before the breed formation is scarce. Thus, reconstruction of the history of livestock populations depends on archaeological, archeo-zoological and DNA analysis of extant populations. Scientific research into genetic diversity takes advantage of the rapid advances in molecular genetics. Studies of mitochondrial DNA, microsatellite DNA profiling and Y-chromosomes have revealed details on the process of domestication, on the diversity retained by breeds and on relationships between breeds. However, we only see a small part of the genetic information and the advent of new technologies is most timely in order to answer many essential questions. High-throughput single-nucleotide polymorphism genotyping is about to be available for all major farm animal species. The recent development of sequencing techniques calls for new methods of data management and analysis and for new ideas for the extraction of information. To make sense of this information in practical conditions, integration of geo-environmental and socio-economic data are key elements. The study and management of farm animal genomic resources (FAnGR) is indeed a major multidisciplinary issue.The goal of the present Research Topic is to collect contributions of high scientific quality relevant to biodiversity management, and applying new methods to either new genomic and bioinformatics approaches for characterization of FAnGR, to the development of FAnGR conservation methods applied ex-situ and in-situ, to socio-economic aspects of FAnGR conservation, to transfer of lessons between wildlife and livestock biodiversity conservation, and to the contribution of FAnGR to a transition in agriculture (FAnGR and agro-ecology).


Book
Innate immunity and neurodegenerative disorders
Authors: --- ---
ISBN: 9782889193103 Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Inflammation of the brain in the context of neurodegenerative disorders is an area of intense debate and discussion, not least in terms of its pathogenic significance and the extent to which it drives disease processes and pathology. This inflammation can take several forms including innate responses involving microglia, humoral responses involving antibody, complement mediated processes and cellular T-cell activation, of which the role and extent of each may differ between diseases. Whilst some diseases have been more intensely linked to inflammation and long-term degeneration (e.g. MS), more traditional chronic neurodegenerative disorders have been thought of in terms of intrinsic neuronal pathology with a secondary innate response. However, it has been described that microglia activation is an early event of many degenerative disorders and evidence is accumulating that it may play a critical role in actually causing pathology and driving disease processes. If true, this would have major therapeutic implications, but what is the evidence that this is the case?The initial observations by Patrick McGeer’s group of post-mortem tissue from patients with Parkinson’s disease revealed the presence of activated brain microglia long-term and has thus lead to the hypothesis that chronic inflammation could participate to neuronal degenerative processes. The significance of these original observations has only been recently revisited, and the development of more powerful tools to study the brain immune response has certainly contributed to this field of research. Chronic inflammation in the brain can take many forms but of particular interest has been the resident microglia and the role they play in this process. In this context, microglia have often been thought to become activated only after the disease has begun and then to contribute minimally to the degenerative process. Emerging new concepts challenge this view by proposing that microglial senescence, for example, may release the disease process and/or accelerate it. In addition, microglia, once activated, can adopt different phenotypes which can be both pro-inflammatory and pro-repair and may impact not only on the healthy adult neuronal population but on those new neurons derived from neurogenic niches of the adult brain.In this Research Topic, we attempt to explore this by first considering the innate immune responses in the brain and the methods by which they can be studied experimentally and in patients with various neurodegenerative disorders. This sets the scene for then discussing a range of different disorders including Alzheimer’s, Parkinson’s, Huntington’s disease and amyotrophic lateral sclerosis. These papers seek to discuss the evidence for an innate immune response and whether this is beneficial or detrimental, as well as its therapeutic implications.


Book
Plant Cell Wall Plasticity under Stress Situations
Authors: ---
ISBN: 303655758X 3036557571 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint is focused on recent novel research related to the role of plant cell walls under biotic and abiotic stresses, which was published in the Special Issue “Plant Cell Wall Plasticity under Stress Situations” of the Plants journal. Considering the importance of this plant cell structure in a plethora of plant development processes, this book focused on unraveling the roles of different cell wall components and their turnover in plant defense against pathogens and adaptative responses, in cell wall hydration ability, and in the development of primitive water transport systems in non-vascular plants.


Book
Current Advances and Challenges in Fisheries and Aquaculture Science: Feature Papers for the New Journey of Fishes
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This addresses current advances and challenges in fisheries and aquaculture science. Exposure of larval fish to elevated temperatures during embryological development may induce craniofacial and morphological alterations, which are suggested possible impacts of global warming. Molecular markers shed new light on the ontogenetic migration of stream fishes. Fast growth rates, early age at maturity, moderate fecundity, and diverse diet explain the potential for introduced fishes to dominate fish communities in their native and introduced range. Taking videos of marine benthic habitats supports low-impact, real-time monitoring of species occurrence. Among heavily fished species, almost half had outdated demographic assessments that would benefit from the integration of data from fisheries sources and improved collaboration among fishery stakeholders and managers. The continued growth of aquaculture will depend upon developing feeds that improve the growth, oxidative status, and immune response of fed cultured organisms. New aquaculture feedstuffs might be derived from plants or microbes, and new additives would include ghrelins and dietary symbiotics. The effects of these constituents on survival, growth, gut histomorphology, immune response were assessed for cultured freshwater and marine species. The results provide suggestions for advances in aquafeeds for the species studied and for cultured fishes more generally. The scientific advances realized with the use of new tools provide the basis for addressing global challenges to fisheries, aquaculture and for ongoing scientific research.


Book
Plant Innate Immunity 2.0
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4


Book
Rice Improvement : Physiological, Molecular Breeding and Genetic Perspectives
Authors: --- ---
ISBN: 3030665305 3030665291 Year: 2021 Publisher: Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.

Keywords

Agriculture. --- Plant breeding. --- Plant genetics. --- Plant physiology. --- Nutrition   . --- Plant Breeding/Biotechnology. --- Plant Genetics and Genomics. --- Plant Physiology. --- Nutrition. --- Alimentation --- Food --- Nutrition --- Health --- Physiology --- Diet --- Dietetics --- Digestion --- Food habits --- Malnutrition --- Botany --- Plants --- Genetics --- Crops --- Agriculture --- Breeding --- Farming --- Husbandry --- Industrial arts --- Life sciences --- Food supply --- Land use, Rural --- Health aspects --- Plant Breeding/Biotechnology --- Plant Genetics and Genomics --- Plant Physiology --- Plant Biotechnology --- Plant Genetics --- Open Access --- Rice Biotechnologies --- Rice Breeding --- biotic stress tolerance --- abiotic stress tolerance --- Submergence tolerance --- Biofortification --- Marker Assisted and Forward Breeding --- disease resistance --- CRISPR/CAS --- Agricultural science --- Botany & plant sciences --- Biotechnology --- Genetics (non-medical) --- Biochemistry --- Arròs --- Millorament selectiu de plantes --- Oryza sativa --- Cereals --- Cuina (Arròs) --- Millora de plantes --- Millorament de conreus --- Millorament genètic de conreus --- Millorament genètic de les plantes --- Millorament genètic de plantes conreades --- Millorament vegetal --- Selecció artificial de les plantes --- Agricultura --- Millora de les espècies --- Hibridació vegetal --- Immunitat de les plantes --- Genètica vegetal --- Plantes transgèniques


Book
Pseudorabies Virus
Authors: ---
ISBN: 303655985X 3036559868 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pseudorabies virus (PRV) is an important swine pathogen that impacts swine industry worldwide. PRV belongs to the alphaherpes virus subfamily of the herpesviruses that has been widely used as a model herpes virus. Most recently, PRV has been reported sporadically spillover into human and other animals. This book collects the newest advances in the field of pseudorabies virus research, including critical reviews and research on viral evolution, replication, virus–host interaction, pathogenesis and immunity, and novel antiviral strategies.

Listing 1 - 10 of 17 << page
of 2
>>
Sort by