Listing 1 - 10 of 26 | << page >> |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
CRISPR/Cas9 --- genome edited plants --- biosafety --- agriculture --- policy and legislation
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Trypanosoma cruzi --- Chagas disease --- parasite-host interaction --- gene function --- CRISPR/Cas9 technique
Choose an application
Neurodegenerative diseases (NDs) are a heterogeneous group of disorders affecting the central nervous system. Despite significant differences in their causes, neuropathological abnormalities, and clinical outcomes, some similarities can be found among them, as for example: 1) frequent aggregation and deposition of misfolded proteins, 2) common molecular mechanisms leading to neurodegeneration, and 3) certain overlap in symptoms and clinical features. To date, there is no cure that could stop or delay the progression of these diseases. The advent of advanced gene therapy techniques such as gene silencing and gene editing opened a new avenue for the development of therapeutic strategies for NDs. The discovery of the RNA interference (RNAi) mechanism, in 1998, by Andrew Fire and Craig Mello allowed an important boost to the gene therapy field, providing a potential therapeutic strategy to treat inherited dominant genetic disorders. The use of small RNA sequences to control the expression of disease-causing genes rapidly implemented in the preclinical studies for different diseases. In the field of NDs, several successful studies using this technology proved its potential as a therapeutic option. However, issues like the type of delivery system (non-viral versus viral) or the potential toxicity of the small RNA molecules, made the translation of gene silencing therapeutics to human application very slow and difficult. Recently, a new hope in the gene therapy field emerged with the development of gene editing techniques like TALENs or CRISPR/Cas9 systems. The opportunity of editing or deleting gene sequences drove the scientific community euphoric, with an enormous increase in the number of published studies using this type of techniques. Recently, the first clinical trial using one of these systems was approved in China. For NDs, gene-editing technology also represents an important therapeutic option, and the first preclinical studies are now being published, showing the potential accomplishment for this technology.
Gene silencing --- Long non-coding RNAs --- RNA interference --- Neurodegenerative diseases --- CRISPR/Cas9 --- Neurodegeneration --- Gene editing --- Antisense oligonucleotides --- Neuroinflammation --- iPS cells
Choose an application
RNA interference (RNAi) is a widely used technology for gene silencing and has become a key tool in a myriad of research and lead discoveries. In recent years, the mechanism of RNAi agents has been well investigated, and the technique has been optimized for better effectiveness and safety. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9/gRNA system is a recent, novel, targeted genome-editing technique derived from the bacterial immune system. Recent advances in gene-editing research and technologies have enabled the CRISPR Cas9 system to become a popular tool for sequence-specific gene editing to correct and modify eukaryotic systems. In this book, we will focus on the mechanisms, applications, regulations (their pros and cons), and various ways in which RNAi-based methods and CRIPSR-Cas9 technology have stimulated the modulation of gene expression, thereby making them a promising therapeutic tool to treat and prevent complex diseases and disorders.
CRISPR-associated protein 9. --- Cas9 (CRISPR-associated protein 9) --- CRISPR/Cas9 --- Endonucleases --- Gene editing --- Life Sciences --- Molecular Genetics --- Genetics and Molecular Biology --- Genomics --- Biochemistry
Choose an application
Apomixis is the consequence of a concerted mechanism that harnesses the sexual machinery and coordinates developmental steps in the ovule to produce an asexual (clonal) seed. Altered sexual developments involve widely characterized functional and anatomical changes in meiosis, gametogenesis, and embryo and endosperm formation. The ovules of apomictic plants skip meiosis and form unreduced female gametophytes whose egg cells develop into a parthenogenetic embryo, and the central cells may or may not fuse to a sperm to develop the seed endosperm. Thus, functional apomixis involves at least three components, apomeiosis, parthenogenesis, and endosperm development, modified from sexual reproduction that must be coordinated at the molecular level to progress through the developmental steps and form a clonal seed. Despite recent progress uncovering specific genes related to apomixis-like phenotypes and the formation of clonal seeds, the molecular basis and regulatorynetwork of apomixis is still unknown. This is a central problem underlying the current limitations of apomixis breeding. This book collates twelve publications addressing different topics around the molecular basis of apomixis, illustrating recent discoveries and advances toward understanding the genetic regulation of the trait, discussing the possible origins of apomixis and the remaining challenges for its commercial deployment in plants.
apomixis --- evolution --- germline --- gene regulation --- sporogenesis --- plant reproduction --- ribosome --- RNA helicase --- sexual development --- stress response --- apomeiosis --- clonal seeds --- endosperm --- heterosis capture --- molecular breeding --- parthenogenesis --- differentially expressed genes --- hybridization --- microarrays --- polyploidy --- Ranunculus --- sexuality --- character segregation --- crop biotechnology --- heterosis --- meiosis --- recombination --- agamospermy --- basal angiosperms (ANA-grade) --- sporocyteless --- polycomb-group proteins --- reproductive systems --- apomixis evolution --- APOSTART --- Poa pratensis --- diplospory --- autonomous endosperm --- genetics --- Taraxacum --- dandelion --- weeping lovegrass --- drought stress --- RNA-seq --- plant breeding --- plant development --- Hieracium piloselloides --- CRISPR/Cas9 --- PHYTOENE DESATURASE (PDS) --- amplicon sequencing --- genome editing --- tissue culture --- haploid progeny --- dicotyledon --- PsASGR-BBML --- pseudogamy --- 5-azacytidine --- abscisic acid --- apospory --- expression profiling --- fluridone --- metabolic homeostasis --- oxidative stress --- sucrose non-fermenting-related protein kinase --- n/a
Choose an application
Nerve sheath tumors can be a significant cause of morbidity for many patients. These include benign tumors such as schwannomas, diffuse and plexiform neurofibromas, and atypical neurofibromas, as well as the aggressive soft tissue sarcoma known as the malignant peripheral nerve sheath tumor (MPNST). Nerve sheath tumors occur sporadically and in the context of the clinical neuro-genetic tumor predisposition syndromes neurofibromatosis type 1 (NF1) and type 2 (NF2). Historically, the mainstay of treatment for nerve sheath tumors has been surgery. However, for both benign and malignant nerve sheath tumors, there is a high recurrence rate, highlighting the pressing need for novel therapies. As we have entered the genomic era, the hope is that an improved understanding of the genetics, and therefore the biology, of these tumors will ultimately lead to therapies that result in better outcomes. In this Special Issue, we include both review articles and original research related to the genomic understanding and modeling of schwannomas, plexiform and diffuse neurofibromas, atypical neurofibromas, and malignant peripheral nerve sheath tumors as well as genomic methods being developed and applied to advance our understanding of these tumors.
neurofibromatosis type 1 --- nerve sheath tumor --- cancer --- latent variables --- machine learning --- supervised learning --- transfer learning --- random forest --- metaVIPER --- tumor deconvolution --- neurofibromatosis --- malignant peripheral nerve sheath tumor --- MPNST --- polycomb repressive complex --- PRC2 --- NF1 --- kinase --- kinome adaptation --- kinome reprogramming --- MET --- MEK --- doxorubicin --- capmatinib --- tram --- genomics --- tumor evolution --- pathology --- next generation sequencing --- clinical genetics --- malignant peripheral nerve sheath tumors --- plexiform neurofibromas --- Schwann cells --- neurofibromatosis type 1 syndrome --- neurofibromin 1 --- genetically engineered mouse models --- heterogeneity --- CRISPR/Cas9 --- mouse models --- sarcoma --- tumor microenvironment --- neurofibromatosis 1 (NF1) --- mebendazole (MBZ) --- COX-2 inhibitor --- malignancy --- chemoprevention --- nerve sheath tumors
Choose an application
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.
Wx --- transgenic cereals --- GWAS --- anther --- cytoplasmic male sterility --- mutants --- oleic acid --- QTL --- plant breeding --- QTL/genes --- lignin --- maintainer --- Japanese plum --- pre-harvest sprouting --- mutations --- RNA-seq --- fertility restoration --- Rf1 gene --- association mapping --- estimated breeding value --- non-open hull 1(noh1) --- protein --- gene mapping --- electrospray ionisation --- climate change --- genome editing --- fatty acid composition --- phloem metabolites --- ISSR --- gold hull and internode --- genotyping by sequencing --- gibberellin --- cultivar --- GmDof4 --- bioinformatics --- CRISPR/Cas9 site directed mutagenesis --- quality groups --- linkage map --- ddRAD sequencing --- breeding scheme --- mutation breeding --- PPR genes --- genetic structure --- genetic resources --- Pentatricopeptide Repeats --- crops --- amylose content --- genetic value --- seed dormancy --- diversity --- mapping populations --- cytoplasmic male sterile --- genomic prediction --- SNP --- TGW6 --- mass spectrometry --- abscisic acid --- wheat --- lodicule --- genome-wide association scan --- genomic selection --- RNA editing --- CRISPR/Cas9 --- nitrogen --- faba bean --- next generation sequencing --- zt-1 --- grass family --- differentially expressed genes --- rice --- brown midrib --- sunflower --- pedigree --- genotyping-by-sequencing --- “omics” data --- quantitative genetics --- orange lemma --- F1 hybrids --- SSR --- drought --- candidate genes --- Brassica napus --- GmDof11 --- new plant breeding techniques --- mutational breeding --- genetic modification --- cell wall --- monolignol pathway
Choose an application
In this Special Issue, we present the state of the art in the field of pig genetics and genomics, including the identification of gene candidates linked to important pig traits and to nutritional modifications, with the aim of collecting the most recent advances. The published manuscripts focused on high-throughput methodologies, such as RNA sequencing, ATAC-seq, MACE-seq, chip-seq, and RRBS, and covered other fields of pig genetics. The pig (Sus scrofa) is the most common large mammal in the world. The Sus genus includes domestic pig and wild boar. Since the draft reference genome sequence of S. scrofa was assembled in 2012, the processes of identification of genes related to important phenotypic traits and of search of genetic markers for pig selection have been significantly refined. In addition, the newest wide-range high-throughput techniques, including microarrays, next-generation sequencing, and the recent PacBio sequencing platform providing ultra-long sequencing reads, allow identifying gene mutations and gene candidates throughout the whole genome, transcriptome, or epigenome and estimating quantitative traits important for breeding as well as the genetic backgrounds of inherited diseases.
Research & information: general --- Biology, life sciences --- Zoology & animal sciences --- HMOX1 gene --- promoter --- transcriptional regulation --- Hezuo Tibetan pig --- AQP3 --- pig --- intramuscular fat --- adipogenesis --- proliferation --- litter size --- total number born alive --- SNP (single nucleotide polymorphism) --- GWAS (Genome-Wide Association Studies) --- heat stress --- Duroc --- RNA-Seq --- NMR --- metabolome --- fatness --- obesity --- extracellular matrix --- fat deposition --- lipid metabolism --- NGS --- genetically modified pigs --- genome modifications --- transgenic pigs --- genetic engineering --- disease models --- recombinant proteins --- xenotransplantation --- xenoantigen --- coagulation system dysregulation --- CRISPR/Cas9 system --- non-homologous DNA ends joining (NHEJ) --- TIDE analysis --- off-target --- skeletal muscle fiber --- meat quality --- metabolic diseases --- lncRNA --- RNA-seq --- porcine β-defensin 2 --- CRISPR/Cas9 --- antimicrobial peptide --- disease-resistant animals --- porcine alveolar macrophages --- DNMT3B --- DNA methylation --- isoform --- TNF-α --- pigs --- fatty acids --- 3′quant mRNA-seq --- nutrigenomics --- TRIM26 --- antiviral response --- IFN-β --- poly (I:C) --- VSV --- PRRSV --- seminal plasma --- endometrium --- global gene expression --- microarray --- alternative splicing --- transcript --- protein --- domain --- single nucleotide polymorphism --- hypothalamus --- puberty --- circRNAs --- pubertal genes --- Duroc pigs --- growth traits --- weighted single-step GWAS --- SNP --- gene expression --- congenital defects --- transcriptomics --- swine --- Sus scrofa --- precision medicine --- lymphatic system --- whole-genome sequencing --- SNP array genotyping --- n/a --- 3'quant mRNA-seq
Choose an application
Viruses are microscopic agents that exist worldwide and are present in humans, animals, plants, and other living organisms in which they can cause devastating diseases. However, the advances of biotechnology and next-generation sequencing technologies have accelerated novel virus discovery, identification, sequencing, and manipulation, showing that they present unique characteristics that place them as valuable tools for a wide variety of biotechnological applications. Many applications of viruses have been used for agricultural purposes, namely concerning plant breeding and plant protection. Nevertheless, it is interesting to mention that plants have also many advantages to be used in vaccine production, such as the low cost and low risks they entail, showing once more the versatility of the use of viruses in biotechnology. Although it will obviously never be ignored that viruses are responsible for devastating diseases, it is clear that the more they are studied, the more possibilities they offer to us. They are now on the front line of the most revolutionizing techniques in several fields, providing advances that would not be possible without their existence. In this book there are presented studies that demonstrate the work developed using viruses in biotechnology. These studies were brought by experts that focus on the development and applications of many viruses in several fields, such as agriculture, the pharmaceutical industry, and medicine.
Bacteriophage --- Salmonella --- biocontrol --- comparative genomics --- phage diversity --- grapevine --- apple latent spherical virus vector --- virus-induced flowering --- reduced generation time --- breeding of grapevine --- virus elimination --- Newcastle disease virus --- reverse genetics --- vaccines --- infectious diseases --- cancer --- porcine epidemic diarrhea virus --- VLP --- chemokines --- pig --- vaccine --- SARS-CoV-2 --- COVID-19 --- phages --- CRISPR --- viruses --- prevention --- diagnosis --- treatment --- adeno-associated virus (AAV) vector --- jaagsiekte sheep retrovirus (JSRV) --- LTR --- enhancer --- transduction --- viral vaccines --- cancers --- COVID-19 vaccines --- self-replicating RNA vectors --- DNA-based vaccines --- RNA-based vaccines --- plant virus --- viroid --- viral vector --- virus-induced gene silencing (VIGS) --- CRISPR/Cas9 --- genome editing --- carotenoid biosynthesis --- circular RNA --- infectious bursal disease virus --- immunization --- recombinant Lactococcus lactis --- variant strain --- baculovirus --- insect cells --- bacmid --- Tn7 --- genome stability --- protein expression --- chikungunya virus --- VLPs --- bioreactor --- CRISPR/Cas systems --- viral vectors --- gene editing --- plant genome engineering --- viral resistance --- adeno-associated virus --- AAV --- cancer gene therapy --- prophage --- hydrothermal vent --- Hypnocyclicus thermotrophus --- lytic cassette --- Escherichia coli --- heterologous expression --- codon optimization --- codon harmonization --- expression vectors --- aspect ratio --- VNPs --- TMV --- PVX --- CPMV --- geminivirus --- theranostics --- CRISPR-cas9 --- clodronate --- macrophage --- gene therapy --- gene expression --- nanotechnology
Choose an application
This book includes a collection of eight original research articles and three reviews covering a wide range of topics in the field of kinetoplastids. In addition, readers can find a compendium of molecular biology procedures and bioinformatics tools.
trypanosomatids --- yeasts --- trypanosomatids genome --- cell cycle phases --- S-phase duration --- DNA replication --- replication origins --- neglected tropical diseases --- Leishmania --- Trypanosoma cruzi --- Trypanosoma brucei --- drug discovery --- in vitro models --- in vivo models --- genomics --- drug resistance --- Leishmania infantum --- proteome --- post-translational modifications (PTMs) --- proteogenomics --- mass spectrometry --- Retrotransposon Hot Spot (RHS) multigene family --- chromosome distribution --- recombination --- gene mosaic structure --- evolution --- nuclear protein --- Leishmania braziliensis --- reverse genetics --- CRISPR–Cas9 --- gene targeting --- phenotyping --- heat shock proteins --- Trypanosoma cruzi strain --- sequencing methods --- genome plasticity --- gene expression --- trans-sialidases --- mucins --- SENP --- Ulp2 --- SUMO --- CRISPR --- protease --- genome --- repeats --- 3′UTR --- multigenic family --- Leishmania donovani --- whole-genome sequencing (WGS) --- transcriptome --- artemisinin drug resistance --- Leishmania viruses --- phylogeny --- coevolution --- endosymbiont protozoan viruses --- transcriptome assembly --- transcriptional regulation --- ontology network --- co-expression network --- taxonomic analysis --- database contamination --- kleptoplastidy
Listing 1 - 10 of 26 | << page >> |
Sort by
|