Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Einwandige Kohlenstoffnanoröhren (SWCNTs) gelten aufgrund ihrer hohen Ladungsträgermobilität, des hohen Oberfläche-Volumen-Verhältnisses und der Tatsache, dass all ihre Atome mit der Umgebung wechselwirken, als hoch interessant für die Sensorik. Hier wird ein neues Konzept für die Messung des pH-Wertes, der als wichtigster Parameter der Flüssiganalytik gilt, auf Basis von SWCNTs vorgestellt und anhand der Charakterisierung der hergestellten Sensoren die Funktionsfähigkeit nachgewiesen.
CNT-FET --- pH --- Kohlenstoff-Nanoröhren --- Sensor
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
This book provides a collection of research and review articles useful for researchers, engineers, students and industry experts in the bioenergy field. The practical and valuable information can be utilized for developing and implementing renewable energy projects, selecting different waste feedstocks, technologies, and products. A detailed insight into advanced technologies such as hydrothermal liquefaction, torrefaction, and supercritical CO2 extraction for making sustainable biofuels and chemicals is provided. A case study on food waste-to-energy valorization processes in Latin America provides experts’ insights to promote a circular economy.
Koelreuteria paniculata biodiesel --- non-edible feedstock --- transesterification --- physicochemical characterization --- optimization --- phenol --- hydrogenation --- Ni/CNT --- cyclohexanol --- transfer hydrogenation --- microalga --- fatty acid --- Vietnam --- Nannochloropsis --- Desmodesmus --- lignocellulosic --- bio-oil --- biocrude --- upgrading --- supercritical extraction --- supercritical CO2 --- hydrotreatment --- biorefinery --- pyrolysis --- hydrothermal liquefaction --- torrefaction --- oats --- maize --- straw --- biochar --- centralized waste valorization --- lifecycle thinking --- AHP --- side flow --- anaerobic digestion --- composting --- rice straw --- bio-crude --- methanol --- phenols --- esters --- energy-consumption ratio
Choose an application
This Special Issue gathers research from different branches of science and engineering disciplines working on experiments and modelling of nanocomposites into one volume. The Guest Editor welcomes papers dedicated to experimental, computational, and theoretical aspects dealing with many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization, properties, design, and applications, and both finite element analysis and molecular dynamic simulations, of nanocomposite materials and structures. Full papers covering novel topics, extending the frontiers of the science and technology of nanoreinforced composites are encouraged. Reviews covering topics of major interest will be also considered.
ab initio --- critical yield strength --- carbon nanotube --- impact buckling --- elasticity --- molecular dynamics simulation --- magnetism --- coarse-grained model --- 3D fiber-metal laminates --- mechanical property --- interface --- nanocomposites --- interface force fields --- YN --- graphene/Fe composite --- cohesive element --- stability --- ScN --- delamination propagation --- interfaces --- graphene nanoplatelets --- nanoindentation --- pressure --- molecular dynamics --- piezoelectric property --- temperature effect --- Fe-Al --- hardness --- equivalent fiber --- disorder --- Fe3Al --- elastic modulus --- delamination buckling --- CNT agglomeration --- CNTs/epoxy nanocomposites --- boron nitride honeycomb
Choose an application
Advanced materials for energy and environmental applications (such as rapid heating, anti-fouling/anti-virus surface, chemical sensor, textile/stretchable sensor, fuel cell, and lithium-ion batteries) have been extensively investigated in the academic and industrial fields. The advent of cabon-based nano-materials (carbon nanotubes, graphene, and carbon black) and inonganic nano-materials (Ag wire/particles, Cu mesh, and transition metal dichalcogenide) has accelerated research interest in energy and environmental applications. This book is focused on the emerging concept and improvement of energy and environmental basic research, as well as in the characterization and analysis of novel energy and environmental base materials. The contents of the book are as below: - Theoretical and experimental studies on advanced conducting nanocomposites; - Electrical properties of nanocomposites under various conditions (dynamic mode, aspect ratio, alignment, and contents) and its applications; - Advanced material for energy applications; - Analysis and materials for environmental applications.
carbon nanotubes --- circumferential shearing --- alignment --- electrical conductivity --- carbon nanotube --- composite --- three-roll milling --- CNT dispersion --- filler length variation --- maize straw --- corn stover --- methane production --- biogas --- substrate --- direct methanol fuel cells --- sputter --- sandpaper --- roughness --- electrochemical impedance spectroscopy --- polarization --- lithium corrosion --- calibration-free laser-induced breakdown spectroscopy --- quantitative analysis --- depth profile analysis --- residual CaSO4 --- solid wastes --- high belite sulfoaluminate cement --- petroleum coke desulfurization slag --- CaSO4 type --- CaSO4 content --- cement properties --- biofouling --- iron bacteria --- nickel-phosphorus-reduced graphene oxide (Ni-P-rGO) --- induction period --- fouling resistance --- nano-composites --- Monte Carlo simulation --- percolation networks --- aspect ratio --- polymer composite --- strain sensor --- hysteresis --- aligned MWCNT --- piezo-resistive characteristics
Choose an application
Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.
graphene oxide --- n/a --- Multi-Walled Carbon Nanotube (MWCNT) --- elution --- gold nanoparticles --- MHD --- heck reaction --- drug delivery --- carbon-nanotubes --- water based nanofluid --- zeolitic imidazolate framework --- Ionic liquid --- electroanalysis --- curved stretching sheet --- multiwalled carbon nanotubes --- lubricating oil additives --- hydrophobic drugs --- agricultural irrigation water --- polarity --- cerium oxide --- adsorption --- electrical properties --- non-linear thermal radiation --- electrochemical properties --- nanomaterials --- radar absorbing materials --- chloride diffusion --- RAFT polymerization --- synthesis methods --- gold(III) --- mechanical properties --- dissolution rate --- carbon materials --- electrochemical sensors --- magnetic solid phase extraction --- silicone rubber --- Single-Walled Carbon Nanotube (SWCNT) --- Pd-CNT nanohybrids --- kinetics --- nonylphenol --- boundary layer --- Casson model --- sensing applications --- organochlorine pesticides --- composites --- multi-wall carbon nanotube (MWCNT) --- polymeric composites --- carbon nanotubes --- structural --- azide-alkyne click chemistry --- functionalized carbon nanotubes --- heat generation --- EMI shielding --- gold(I) --- cement mortars --- semi-homogeneous catalysis --- functionalized CNTs --- nanomedicine --- multi-walled carbon nanotubes --- numerical solution --- PMMA --- HAM --- complex permittivity --- thermal radiation --- stretching sheet
Choose an application
Heterogeneous catalysis, exploiting photo- and electrochemical reactions, has expanded rapidly in recent decades, having undergone various developments, especially from both energetic and environmental points of view. Photocatalysis plays a pivotal role in such applications as water splitting and air/water remediation. Electrocatalysis can be found in a large array of research fields, including the development of electroanalytical sensors, wastewater treatment, and energy conversion devices (e.g., batteries, fuel and solar cells, etc.). Therefore, the fine control of the synthetic procedures, together with extensive physicochemical characterisations of the tailor-made catalytic nanomaterials, are of fundamental importance to achieving the desired results. The present book will include recent enhancements in oxide/metal nanoparticles for photocatalytic and electrocatalytic applications, especially in the fields of pollutants abatement and energy conversion.
pharmaceutical --- photodegradation --- photocatalytic selective oxidation --- magnetron sputtering --- solid-state synthesis --- degradation --- visible light --- nanocomposites --- hydrogen production --- oxygen vacancies --- noble metal nanoparticles --- photodeposition --- Cr(VI) --- CaIn2S4/ZnIn2S4 composites --- core-shell structures --- impregnation pH --- active facets --- tantalum oxynitride --- oxygen vacancy --- Ga2O3 --- mineralization --- water oxidation --- TiO2 --- g-C3N4 --- black TiO2 --- ascorbic acid --- photoelectrochemistry --- Bi4Ti3O12 nanosheets --- Alizarin Red S --- hydrogen titanate --- surface modification --- Zn2SnO4/BiOBr --- organic pollutant --- structure-property relationships --- solid-state chemical reduction --- simulated sunlight --- localized surface plasmon resonance --- benzylic alcohols --- mesoporous Nb2O5 --- active site hydrophilicity --- photocatalysis --- photocatalytic degradation --- oxygen reduction reaction --- rutile --- cobalt phosphate --- Ti–C bonds --- porous --- visible light photocatalysis --- active species --- surface hydroxyl groups --- interfacial charge transfer --- Pt-free catalysts --- micrometric TiO2 --- Mn decoration --- organic pollutants --- CNT N-doped carbons --- band gap energy --- heterogeneous photocatalysis --- photocatalytic performance --- photocatalytic hydrogen evolution --- hydrothermal method
Choose an application
For this reprint, we intend to cover theoretical as well as experimental works performed on small scale to predict the material properties and characteristics of any advanced and metamaterials. New studies on mechanics of small-scale structures such as MEMS/NEMS, carbon and non-carbon nanotubes (e.g., CNTs, Carbon nitride, and Boron nitride nanotubes), micro/nano-sensors, nanocomposites, macrocomposites reinforced by micro-/nano-fillers (e.g., graphene platelets), etc., are included in this reprint.
Technology: general issues --- History of engineering & technology --- carbon nanotube-reinforced composite --- forced vibration --- dynamic analysis --- beam --- harmonic load --- assembly --- metal-organic frameworks --- hydrogen evolution reaction --- Cu2−xS --- interfacial interaction --- conducting carbon black network --- mechanical property --- electromagnetic interference shielding --- CNT --- elastic foundations --- nonlinear free vibration --- nonlinear frequency --- shallow shell structures --- hyperelastic micro/nanobeam --- extended modified couple stress theory --- strain-stiffening effect --- nonlinear frequency response --- functionally graded material --- thermoelasticity --- sliding contact --- wear --- heating from friction --- thermoelastic instability --- wood --- nano-, micro-, meso-, and macro-structure --- multiscale mechanical properties --- size effects --- Hall-Petch law --- dendrochronology --- surface bonding --- nanoporous graphene --- atomic force microscopy --- hyperelastic microcantilever --- softening resonance --- non-contact cantilever --- shooting and arc-length continuation method --- developed Galerkin method --- graphene nanoplatelets --- recycle carbon fibers --- air nanobubbles --- cement-based composites and nanocomposites --- mechanical properties --- electrical properties
Choose an application
Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.
polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a
Listing 1 - 10 of 11 | << page >> |
Sort by
|