Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics.
Differential equations, Elliptic. --- Differential equations, Parabolic. --- Differential equations, Partial. --- Partial differential equations --- Parabolic differential equations --- Parabolic partial differential equations --- Differential equations, Partial --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, partial. --- Potential theory (Mathematics). --- Functional analysis. --- Partial Differential Equations. --- Potential Theory. --- Functional Analysis. --- Functional calculus --- Calculus of variations --- Functional equations --- Integral equations --- Green's operators --- Green's theorem --- Potential functions (Mathematics) --- Potential, Theory of --- Mathematical analysis --- Mechanics --- Partial differential equations. --- Differential equations, Elliptic --- Differential equations, Parabolic --- Equations aux dérivées partielles --- Equations différentielles elliptiques --- Equations différentielles paraboliques --- EPUB-LIV-FT LIVMATHE SPRINGER-B --- Differential equations. --- Differential Equations. --- 517.91 Differential equations --- Differential equations
Choose an application
Devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this book focuses on gradient flows in metric spaces. It covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance.
Differential geometry. Global analysis --- Mathematical physics --- Operational research. Game theory --- differentiaalvergelijkingen --- kansrekening --- differentiaal geometrie --- stochastische analyse --- Measure theory --- Metric spaces --- Differential equations, Partial --- Monotone operators --- Evolution equations, Nonlinear --- Mesure, Théorie de la --- Espaces métriques --- Equations aux dérivées partielles --- Opérateurs monotones --- Equations d'évolution non linéaires --- EPUB-LIV-FT LIVMATHE LIVSTATI SPRINGER-B --- Global analysis (Mathematics). --- Mathematics. --- Global differential geometry. --- Distribution (Probability theory. --- Analysis. --- Measure and Integration. --- Differential Geometry. --- Probability Theory and Stochastic Processes. --- Distribution functions --- Frequency distribution --- Characteristic functions --- Probabilities --- Geometry, Differential --- Math --- Science --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic --- Mathematical analysis. --- Analysis (Mathematics). --- Measure theory. --- Differential geometry. --- Probabilities. --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- Differential geometry --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra) --- 517.1 Mathematical analysis --- Mathematical analysis --- Metric spaces. --- Differential equations, Parabolic. --- Monotone operators. --- Evolution equations, Nonlinear. --- Operator theory --- Parabolic differential equations --- Parabolic partial differential equations --- Spaces, Metric --- Generalized spaces --- Set theory --- Topology --- Nonlinear equations of evolution --- Nonlinear evolution equations --- Differential equations, Nonlinear
Listing 1 - 2 of 2 |
Sort by
|