Narrow your search
Listing 1 - 10 of 46 << page
of 5
>>
Sort by
Introduction to Computational Biology
Authors: --- ---
ISBN: 9783764367008 9783764373870 3764367008 3764373873 Year: 2006 Publisher: Basel Birkhäuser Verlag

Loading...
Export citation

Choose an application

Bookmark

Abstract

Molecular biology has changed dramatically over the past two decades. Until the early 1990s genes were studied one at a time by small teams of researchers; today entire genomes are sequenced by internationally collaborating laboratories. In the bygone gene-centered era the accumulation of data was the rate-limiting step in research. Now that step is often data interpretation. This is increasingly dependent on computational methods and as a consequence, computational biology has emerged in the past decade as a new subdiscipline of biology. This introduction to computational biology is centered on the analysis of molecular sequence data. There are two closely connected aspects to biological sequences: (i) their relative position in the space of all other sequences, and (ii) their movement through this sequence space in evolutionary time. Accordingly, the first part of the book deals with classical methods of sequence analysis: pairwise alignment, exact string matching, multiple alignment, and hidden Markov models. In the second part evolutionary time takes center stage and phylogenetic reconstruction, the analysis of sequence variation, and the dynamics of genes in populations are explained in detail. In addition, the book contains a computer program with a graphical user interface that allows the reader to experiment with a number of key concepts developed by the authors. Introduction to Computational Biology is intended for students enrolled in courses in computational biology or bioinformatics as well as for molecular biologists, mathematicians, and computer scientists. Bernhard Haubold is associate professor at the University of Applied Sciences, Weihenstephan, Germany. Thomas Wiehe is associate professor at the University of Cologne, Germany.


Book
Mathematical physiology
Authors: ---
ISBN: 9780387758473 9780387758466 9780387094199 9780387793870 9780387793887 Year: 2009 Publisher: New York, NY : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. This second volume deals with the physiology of systems and the first volume with the fundamental principles of cell physiology. The book includes detailed illustrations and numerous excercises with selected solutions. The emphasis throughout is on the applications; because of this interdisciplinary approach, this book will be of interest to students and researchers, not only in mathematics, but also in bioengineering, physics, chemistry, biology, statistics and medicine. James Keener is a Distinguished Professor of Mathematics at the University of Utah. He and his wife live in Salt Lake City, but don't be surprised if he moves to the mountains. James Sneyd is the Professor of Applied Mathematics at the University of Auckland in New Zealand, where he has worked for the past six years. He lives with his wife and three children beside a beach, and would rather be swimming. Reviews of the first edition: ...probably the best book ever written on the interdisciplinary field of mathematical physiology. Mathematical Reviews, 2000 In addition to being good reading, excellent pedagogy, and appealing science, the exposition is lucid and clear, and there are many good problem sets to choose from... Highly recommended. Mathematical Biosciences, 1999 Both authors are seasoned experts in the field of mathematical physiology and particularly in the field of excitability, calcium dynamics and spiral waves. It directs students to become not merely skilled technicians in biological research but masters of the science. SIAM, 2004 The first edition was the winner of the 1998 Association of American Publishers "Best New Title in Mathematics."


Book
Bioinformatics for systems biology
Author:
ISBN: 9781934115022 9781597454407 Year: 2009 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The biological sciences are now in the midst of a true life sciences revolution akin to what physics experienced just after the turn of the last century. We are now in a phase of unparalleled growth that is reflected by the amount of data generated from each experiment. At the time of this writing, the rate of data acquisition was approaching 2 terabytes over the course of 5 days with first pass analysis proceeding over the following 2-3 week period. This fundamental shift has provided unprecedented opportunities that for the first time afford us the ability, i.e., means, breadth, and depth of data, to truly address human biology at the systems level. This wealth of information from seemingly disparate datasets and its integration is being realized through bioinformatics. It is with this philosophy that the text Bioinformatics for Systems Biology was born. This revolution has spawned true personalized medicine that encompasses diagnostics and treatment through to cure. For the physical and computer scientist, this text provides an introduction to the basic biological principles governing a cell. This quickly moves from the fundamentals to exploring the underlying genetic processes. While providing a rudimentary and necessary overview for the life scientist, the physical and computer scientist will be apprised of various nuances within the field reflecting the reality of "wet-bench" science. For those in the life sciences, it I rapidly becoming appreciated that we now progressing from examining our favorite "pet" gene to the system. Statistics is now an essential component to understand the vast datasets and this is emphasized throughout the text. The majority of the text is devoted to the common ground that these groups share. It provides rich examples of tools, databases, and strategies to mine the databases to reveal novel insights. A host of examples of parsing the data into a series of overlays that use various presentation systems are reviewed. The goal is to provide a representation most comfortable to the user to enable the user to thoroughly explore the data. The text concludes with examples of how the systems information is used to inform personalized medicine in a true "bench to bedside" manner. Bioinformatics for Systems Biology bridges and unifies many disciplines. It presents the life scientist, computational biologist, and mathematician with a common framework. Only by linking the groups together may the true life sciences revolution move forward in the mostly uncharted and emerging field of Systems Biology.


Book
Patient-Specific Modeling of the Cardiovascular System
Authors: ---
ISBN: 9781441966919 9781441966902 Year: 2010 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

Patient-Specific Modeling of the Cardiovascular System demonstrates the design of a variety of patient-specific models within the cardiovascular system and how they could be applied on a larger scale in the clinic. Patient-specific modeling will lead to a paradigm shift within medicine if applied successfully, yet many questions need to be answered before computational modeling can be fully integrated with standard care. In order to answer the most essential questions, a selection of the world's leading computational modelers and clinicians have been brought together in this book. Healthcare professionals and medical students interested in the clinical application of patient-specific cardiovascular modeling will find Patient-Specific Modeling of the Cardiovascular System a valuable resource.


Book
Anticipatory Systems
Authors: ---
ISBN: 9781461412694 9786613576743 1461412692 1280398825 Year: 2012 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

Robert Rosen was not only a biologist, he was also a brilliant mathematician whose extraordinary contributions to theoretical biology were tremendous. Founding, with this book, the area of Anticipatory Systems Theory is a remarkable outcome of his work in theoretical biology. This second edition of his book Anticipatory Systems, has been carefully revised and edited, and includes an Introduction by Judith Rosen. It has also been expanded with a set of Prolegomena by Dr. Mihai Nadin, who offers an historical survey of this fast growing field since the original work was published. There is also some exciting new work, in the form of an additional chapter on the Ontology of Anticipation, by Dr. John Kineman.  An addendum-- with autobiographical reminiscences by Robert Rosen, himself, and a short story by Judith Rosen about her father-- adds a personal touch.  This work, now available again, serves as the guiding foundations for the growing field of Anticipatory Systems and, indeed, any area of science that deals with living organisms in some way, including the study of Life and Mind. It will also be of interest to graduate students and researchers in the field of Systems Science.


Book
Protein-protein interactions and networks : identification, computer analysis, and prediction
Authors: ---
ISBN: 9781848001251 184800124X 9781848001244 9786612824067 1282824066 1848001258 Year: 2008 Publisher: London : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The biological interactions of living organisms, and protein-protein interactions in particular, are astonishingly diverse and present numerous challenges to modern biomolecular research because of their complexity. Analysis of patterns and principles governing these interactions has prompted a rapid development of computational methods to identify protein interaction partners and to understand the roles of individual components of protein interaction networks in cell functions. This book integrates different approaches from bioinformatics, biochemistry, computational analysis and systems biology to offer the reader a comprehensive global view of the diverse data on protein-protein interactions and protein interaction networks. It brings together the descriptions of experimental techniques and expounds on different computational algorithms for protein network analysis and prediction of protein and domain interactions, with each chapter containing a description of the problem, a review of methods and algorithms, a list of resources and current conclusions. Features • Reviews experimental techniques for identification of protein interactions • Discusses protein interaction databases and methods of integrating data from diverse sources • Describes computational methods to predict protein and domain interaction partners • Explores the properties of interaction interfaces and highlights approaches to model the assembly of protein complexes • Examines the topological and dynamical properties of protein interaction networks and presents the tools for comparative analysis of these networks Written by leading experts, Protein-protein Interactions and Networks provides a broad, thorough and multidisciplinary coverage of this field. It will be invaluable to researchers from academia and the bioinformatics industry, as well as an excellent auxiliary text for graduate students studying the topic.


Book
Bioconductor case studies
Author:
ISBN: 9780387772400 0387772391 9780387772394 9786613250940 0387772405 1283250942 Year: 2008 Publisher: New York, N.Y. : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include * import and preprocessing of data from various sources * statistical modeling of differential gene expression * biological metadata * application of graphs and graph rendering * machine learning for clustering and classification problems * gene set enrichment analysis Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table. The authors of this book have longtime experience in teaching introductory and advanced courses to the application of Bioconductor software. Florian Hahne is a Postdoc at the Fred Hutchinson Cancer Research Center in Seattle, developing novel methodologies for the analysis of high-throughput cell-biological data. Wolfgang Huber is a research group leader in the European Molecular Biology Laboratory at the European Bioinformatics Institute in Cambridge. He has wide-ranging experience in the development of methods for the analysis of functional genomics experiments. Robert Gentleman is Head of the Program in Computational Biology at the Fred Hutchinson Cancer Research Center in Seattle, and he is one of the two authors of the original R system. Seth Falcon is a member of the R core team and former project manager and developer for the Bioconductor project.


Book
Computational Neuroscience
Authors: --- --- ---
ISBN: 9780387886305 9780387886299 Year: 2010 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

The human brain is among the most complex systems known to mankind. Neuroscientists seek to understand brain function through detailed analysis of neuronal excitability and synaptic transmission. Only in the last few years has it become feasible to capture simultaneous responses from a large enough number of neurons to empirically test the theories of human brain function computationally. This book is comprised of state-of-the-art experiments and computational techniques that provide new insights and improve our understanding of the human brain. This volume includes contributions from diverse disciplines including electrical engineering, biomedical engineering, industrial engineering, and medicine, bridging a vital gap between the mathematical sciences and neuroscience research. Covering a wide range of research topics, this volume demonstrates how various methods from data mining, signal processing, optimization and cutting-edge medical techniques can be used to tackle the most challenging problems in modern neuroscience. The results presented in this book are of great interest and value to scientists, graduate students, researchers and medical practitioners interested in the most recent developments in computational neuroscience.


Book
Mathematical Models in Population Biology and Epidemiology
Authors: --- ---
ISBN: 9781461416869 9781461416852 Year: 2012 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook provides an introduction to the field of mathematical biology through the integration of classical applications in ecology with more recent applications to epidemiology, particularly in the context of spread of infectious diseases. It integrates modeling, mathematics, and applications in a semi-rigorous way, stating theoretical results and giving references but not necessarily giving detailed proofs, providing a solid introduction to the field to undergraduates (junior and senior level), graduate students in applied mathematics, ecology, epidemiology or evolutionary biology, sustainability scientists, and to researchers who must routinely read the practical and theoretical results that come from modeling in ecology and epidemiology. This new edition has been updated throughout. In particular the chapters on epidemiology have been updated and extended considerably, and there is a new chapter on spatially structured populations that incorporates dispersal. The number of problems has been increased and the number of projects has more than doubled, in particular those stressing connections to data. In addition some examples, exercises, and projects include use of Maple and Matlab. Review of first edition: "A strength of the book is the large number of biologically-motivated problem sets. These and the references to the original biological papers would be valuable resources for an instructor." (UK Nonlinear News, 2001)

Networks: From Biology to Theory
Authors: --- --- ---
ISBN: 1281066664 9786611066666 1846287804 9781846284854 1846284856 9781846287800 1849966095 Year: 2007 Publisher: London Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

During the past decades, we have witnessed the thriving development of new mathematical, computational and theoretical approaches such as bioinformatics and neuroinformatics to tackle some fundamental issues in biology. These scientific approaches focus no longer on individual units, such as nerve cells or genes, but rather on the emerging dynamic patterns of interactions between them. These concentrate on the interplay between the local dynamics and activity transmissions on one side and the global structure of the underlying connection scheme on the other hand. In this light, the concept of a network emerges as a powerful and stimulating research paradigm in mathematics, physics and computer science, and demonstrates a very lively interaction between experimental findings, simulation studies, and theoretical investigations that then in turn lead to new experimental questions. This volume explores this concept in full and features contributions from a truly global set of contributors, many of whom are pre-eminent in their respective fields.

Listing 1 - 10 of 46 << page
of 5
>>
Sort by