Narrow your search

Library

EhB (4)

VUB (4)


Resource type

book (4)


Language

English (4)


Year
From To Submit

2010 (4)

Listing 1 - 4 of 4
Sort by

Book
Hardware Acceleration of EDA Algorithms : Custom ICs, FPGAs and GPUs
Authors: --- ---
ISBN: 9781441909442 9781441909459 9781441909435 9781489983336 Year: 2010 Publisher: Boston MA Springer US

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hardware Acceleration of EDA Algorithms: Custom ICs, FPGAs and GPUs Kanupriya Gulati Sunil P. Khatri This book deals with the acceleration of EDA algorithms using hardware platforms such as Custom ICs, FPGAs and GPUs. Widely applied CAD algorithms are studied for potential acceleration on these platforms. Coverage includes discussion of conditions under which it is preferable to use one platform over another, e.g., when an EDA problem has a high degree of data parallelism, the GPU is typically the preferred platform, whereas when the problem has more control, an FPGA may be preferred. Results are presented for the acceleration of several CAD algorithms (fault simulation, fault table generation, model card evaluation in SPICE, Monte Carlo based statistical static timing analysis, Boolean Satisfiability), demonstrating speedups up to 800X compared to single-core implementatinos of these algorithms. This book serves as a valuable guide on how best to leverage parallelism to accelerate CAD algorithms. It also presents a methodology to automatically extract SIMD parallelism from regular uniprocessor code which satisfies a set of constraints. With this approach, such uniprocessor code can automatically be converted to GPU code, allowing for significant acceleration. This approach is particularly useful since different GPUs have vastly different specifications, making the manual generation of GPU code an unscalable proposition. In particular, this book: Provides guidelines on whether to use Custom ICs, GPUs or FPGAs when accelerating a given EDA algorithm, validating these suggestions with a concrete example (Boolean Satisfiability) implemented on all these platforms; Demonstrates the acceleration of several popular EDA algorithms on GPUs, with speedups up to 800X; Helps the reader by presenting example algorithms which may be used by the reader to determine how best to accelerate their specific EDA algorithm; Discusses an automatic approach to generate GPU code, given regular uniprocessor code which satisfies a set of constraints; Serves as a valuable reference for anyone interested in exploring alternative hardware platforms for accelerating various EDA applications by harnessing the parallelism available in these platforms.


Book
Analysis and Design of Resilient VLSI Circuits : Mitigating Soft Errors and Process Variations
Authors: --- ---
ISBN: 9781441909312 9781441909329 9781441909305 9781489985101 Year: 2010 Publisher: Boston MA Springer US

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is motivated by the challenges faced in designing reliable integratedsystems using modern VLSI processes. The reliable operation of Integrated Circuits (ICs) has become increasingly difficult to achieve in the deep sub-micron (DSM) era. With continuously decreasing device feature sizes, combined with lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations and radiation-induced soft errors. This book describes the design of resilient VLSI circuits. It presents algorithms to analyze the detrimental effects of radiation particle strikes and processing variations on the electrical behavior of VLSI circuits, as well as circuit design techniques to mitigate the impact of these problems. Describes the state of the art in the areas of radiation tolerant circuit design and process variation tolerant circuit design; Presents analytical approaches to test efficiently the severity of electrical effects of radiation/process variations, as well as techniques to minimize the effects due to these two problems; Distills content oriented toward nuclear engineers into leading-edge algorithms and techniques that can be understood easily and applied by VLSI designers.


Book
Minimizing and Exploiting Leakage in VLSI Design
Authors: --- --- --- --- --- et al.
ISBN: 9781441909503 9781441909510 9781441909497 9781489985293 Year: 2010 Publisher: Boston MA Springer US

Loading...
Export citation

Choose an application

Bookmark

Abstract

Minimizing and Exploiting Leakage in VLSI Design Nikhil Jayakumar, Suganth Paul, Rajesh Garg, Kanupriya Gulati and Sunil P. Khatri Power consumption of VLSI (Very Large Scale Integrated) circuits has been growing at an alarmingly rapid rate. This increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. Traditionally, dynamic (switching) power has dominated the total power consumption of an IC. However, due to current scaling trends, leakage power has now become a major component of the total power consumption in VLSI circuits. Leakage power reduction is especially important in portable/hand-held electronics such as cell-phones and PDAs. This book presents techniques aimed at reducing and exploiting leakage power in digital VLSI ICs. The first part of this book presents several approaches to reduce leakage in a circuit. The second part of this book shows readers how to turn the leakage problem into an opportunity, through the use of sub-threshold logic, with adaptive body bias to make the designs robust to variations. The third part of this book presents design and implementation details of a sub-threshold IC, using the ideas presented in the second part of this book. Provides a variety of approaches to control and exploit leakage, including implicit approaches to find the leakage of all input vectors in a design, techniques to find the minimum leakage vector of a design (with and without circuit modification), ASIC approaches to drastically reduce leakage, and methods to find the optimal reverse bias voltage to maximally reduce leakage. Presents a variation-tolerant, practical design methodology to implement sub-threshold logic using closed-loop adaptive body bias (ABB) and Network of PLA (NPLA) based design. In addition, asynchronous micropipelining techniques are presented, to substantially reclaim the speed penalty of sub-threshold design. Validates the proposed ABB and NPLA sub-threshold design approach by implementing a BFSK transmitter design in the proposed design style. Test results from the fabricated IC are provided as well, indicating that a power improvement of 20X can be obtained for a 0.25um process (projected power improvements are 100X to 500X for 65nm processes).


Book
On and Off-Chip Crosstalk Avoidance in VLSI Design
Authors: --- --- ---
ISBN: 9781441909473 9781441909480 9781441909466 9781489983275 Year: 2010 Publisher: Boston MA Springer US

Loading...
Export citation

Choose an application

Bookmark

Abstract

On- and Off-Chip Crosstalk Avoidance in VLSI Design Chunjie Duan, Brock J. LaMeres and Sunil P. Khatri Deep Submicron (DSM) processes present many challenges to Very Large Scale Integration (VLSI) circuit designers. One of the greatest challenges is inter-wire crosstalk within on- and off-chip bus traces. Capacitive crosstalk in on-chip busses becomes significant with shrinking feature sizes of VLSI fabrication processes, while inductive cross-talk becomes a problem for busses with high off-chip data transfer rates. The presence of crosstalk greatly limits the speed and increases the power consumption of an IC design. This book presents approaches to avoid crosstalk in both on-chip as well as off-chip busses. These approaches allow the user to trade off the degree of crosstalk mitigation against the associated implementation overheads. In this way, a continuum of techniques is presented, which help improve the speed and power consumption of the bus interconnect. These techniques encode data before transmission over the bus to avoid certain undesirable crosstalk conditions and thereby improve the bus speed and/or energy consumption. In particular, this book: Presents novel ways to combine chip and package design, reducing off-chip crosstalk so that VLSI systems can be designed to operate significantly faster; Provides a comprehensive set of bus crosstalk cancellation techniques, both memoryless and memory-based; Provides techniques to design extremely efficient CODECs for crosstalk cancellation; Provides crosstalk cancellation approaches for multi-valued busses; Offers a battery of approaches for a VLSI designer to use, depending on the amount of crosstalk their design can tolerate, and the amount of area overhead they can afford.

Listing 1 - 4 of 4
Sort by