Narrow your search

Library

EhB (2)

VUB (2)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2011 (1)

2010 (1)

Listing 1 - 2 of 2
Sort by

Book
Spectral analysis of large dimensional random matrices
Authors: ---
ISBN: 9781441906618 9781441906601 1441906606 1441906614 1441906622 Year: 2010 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory. Zhidong Bai is a professor of the School of Mathematics and Statistics at Northeast Normal University and Department of Statistics and Applied Probability at National University of Singapore. He is a Fellow of the Third World Academy of Sciences and a Fellow of the Institute of Mathematical Statistics. Jack W. Silverstein is a professor in the Department of Mathematics at North Carolina State University. He is a Fellow of the Institute of Mathematical Statistics. .


Book
Probability Inequalities
Authors: --- ---
ISBN: 9783642052613 Year: 2011 Publisher: Berlin Heidelberg Springer Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract

Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.

Listing 1 - 2 of 2
Sort by