Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Mathematics --- Analytical spaces --- Functional analysis --- Differential equations --- Mathematical analysis --- Mathematical physics --- differentiaalvergelijkingen --- analyse (wiskunde) --- functies (wiskunde) --- wiskunde
Choose an application
This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors. .
Functional analysis --- Numerical approximation theory --- Mathematics --- Computer science --- functies (wiskunde) --- informatica --- wiskunde
Choose an application
This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.
Choose an application
This book examines in detail approximate fixed point theory in different classes of topological spaces for general classes of maps. It offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods, for a wide variety of topologies and maps. Content includes known and recent results in topology (with proofs), as well as recent results in approximate fixed point theory. This work starts with a set of basic notions in topological spaces. Special attention is given to topological vector spaces, locally convex spaces, Banach spaces, and ultrametric spaces. Sequences and function spaces-and fundamental properties of their topologies-are also covered. The reader will find discussions on fundamental principles, namely the Hahn-Banach theorem on extensions of linear (bounded) functionals; the Banach open mapping theorem; the Banach-Steinhaus uniform boundedness principle; and Baire categories, including some applications. Also included are weak topologies and their properties, in particular the theorems of Eberlein-Smulian, Goldstine, Kakutani, James and Grothendieck, reflexive Banach spaces, l_{1}- sequences, Rosenthal's theorem, sequential properties of the weak topology in a Banach space and weak* topology of its dual, and the Fréchet-Urysohn property. The subsequent chapters cover various almost fixed point results, discussing how to reach or approximate the unique fixed point of a strictly contractive mapping of a spherically complete ultrametric space. They also introduce synthetic approaches to fixed point problems involving regular-global-inf functions. The book finishes with a study of problems involving approximate fixed point property on an ambient space with different topologies. By providing appropriate background and up-to-date research results, this book can greatly benefit graduate students and mathematicians seeking to advance in topology and fixed point theory.
Topology --- Operator theory --- Functional analysis --- analyse (wiskunde) --- functies (wiskunde) --- topologie
Choose an application
Topology --- Functional analysis --- Mathematical analysis --- analyse (wiskunde) --- functies (wiskunde) --- topologie
Choose an application
This monograph provides a complete and self-contained account of the theory, methods, and applications of constant-sign solutions of integral equations. In particular, the focus is on different systems of Volterra and Fredholm equations. The presentation is systematic and the material is broken down into several concise chapters. An introductory chapter covers the basic preliminaries. Throughout the book many examples are included to illustrate the theory. The book contains a wealth of results that are both deep and interesting. This unique book will be welcomed by mathematicians working on integral equations, spectral theory, and on applications of fixed point theory and boundary value problems. .
Algebra --- Differential equations --- Mathematics --- differentiaalvergelijkingen --- algebra --- wiskunde
Choose an application
Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
Differential geometry. Global analysis --- Ergodic theory. Information theory --- Mathematics --- Genetics --- differentiaal geometrie --- genetica --- wiskunde --- informatietheorie
Choose an application
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-type inequalities and their extensions on time scales.
Functional analysis --- Mathematics --- Measuring methods in physics --- Mathematical physics --- differentiaalvergelijkingen --- functies (wiskunde) --- meettechniek --- wiskunde
Choose an application
This monograph establishes a theory of classification and translation closedness of time scales, a topic that was first studied by S. Hilger in 1988 to unify continuous and discrete analysis. The authors develop a theory of translation function on time scales that contains (piecewise) almost periodic functions, (piecewise) almost automorphic functions and their related generalization functions (e.g., pseudo almost periodic functions, weighted pseudo almost automorphic functions, and more). Against the background of dynamic equations, these function theories on time scales are applied to study the dynamical behavior of solutions for various types of dynamic equations on hybrid domains, including evolution equations, discontinuous equations and impulsive integro-differential equations. The theory presented allows many useful applications, such as in the Nicholson`s blowfiles model; the Lasota-Wazewska model; the Keynesian-Cross model; in those realistic dynamical models with a more complex hibrid domain, considered under different types of translation closedness of time scales; and in dynamic equations on mathematical models which cover neural networks. This book provides readers with the theoretical background necessary for accurate mathematical modeling in physics, chemical technology, population dynamics, biotechnology and economics, neural networks, and social sciences.
Functional analysis --- Harmonic analysis. Fourier analysis --- Differential equations --- Mathematics --- differentiaalvergelijkingen --- mathematische modellen --- wiskunde
Choose an application
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
Functional analysis --- Differential equations --- Mathematical analysis --- Numerical analysis --- analyse (wiskunde) --- functies (wiskunde) --- mathematische modellen --- numerieke analyse
Listing 1 - 10 of 11 | << page >> |
Sort by
|