Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Plant physiology. Plant biophysics --- Botany --- systematische plantkunde --- planten
Choose an application
The aim of this project is to produce the world’s most comprehensive reference in plant sciences. The Plant Sciences will be published both in print and online; the online text will be regularly updated to enable the reference to remain a useful authoritative resource for decades to come. The aim is to provide a sustainable superstructure on which can be built further volumes as plant science evolves. The first edition will contain ten volumes, with approximately 20-30 chapters per volume. The target audience for the initial ten volumes will be upper-division undergraduates, as well as graduate students and practitioners looking for an entry into a particular topic. The Encyclopedia will provide both background and essential information in plant biology. Topics will include plant genetics, genomics, biochemistry, natural products, proteins, cell biology, development, reproduction, physiology, ecology, evolution, systematics, biodiversity, and applications, including crop improvement and non-food applications. .
Plant genetics. Plant evolution --- Plant physiology. Plant biophysics --- Phytomorphology. Phytoanatomy --- Botany --- Biochemical engineering --- systematische plantkunde --- plantenfysiologie --- biochemie --- botanie --- planten
Choose an application
Computational intelligence techniques are becoming more and more important for automated problem solving nowadays. Due to the growing complexity of industrial applications and the increasingly tight time-to-market requirements, the time available for thorough problem analysis and development of tailored solution methods is decreasing. There is no doubt that this trend will continue in the foreseeable future. Hence, it is not surprising that robust and general automated problem solving methods with satisfactory performance are needed.
Choose an application
This book provides a comprehensive study of the state of the art in location privacy for mobile applications. It presents an integrated five-part framework for location privacy research, which includes the analysis of location privacy definitions, attacks and adversaries, location privacy protection methods, location privacy metrics, and location-based mobile applications. In addition, it analyses the relationships between the various elements of location privacy, and elaborates on real-world attacks in a specific application. Furthermore, the book features case studies of three applications and shares valuable insights into future research directions. Shedding new light on key research issues in location privacy and promoting the advance and development of future location-based mobile applications, it will be of interest to a broad readership, from students to researchers and engineers in the field.
Human rights --- Computer architecture. Operating systems --- Computer. Automation --- GSM (global system for mobile communications) --- informatica --- privacy --- computerbeveiliging
Choose an application
This book provides state-of-the-art Face De-Identification techniques and privacy protection methods, while highlighting the challenges faced in safeguarding personal information. It presents three innovative image privacy protection approaches, including differential private k-anonymity, identity differential privacy guarantee and personalized and invertible Face De-Identification. In addition, the authors propose a novel architecture for reversible Face Video De-Identification, which utilizes deep motion flow to ensure seamless privacy protection across video frames. This book is a compelling exploration of the rapidly evolving field of Face De-Identification and privacy protection in the age of advanced AI-based face recognition technology and pervasive surveillance. This insightful book embarks readers on a journey through the intricate landscape of facial recognition, artificial intelligence, social network and the challenges posed by the digital footprint left behind by individuals in their daily lives. The authors also explore emerging trends in privacy protection and discuss future research directions. Researchers working in computer science, artificial intelligence, machine learning, data privacy and cybersecurity as well as advanced-level students majoring in computers science will find this book useful as reference or secondary text. Professionals working in the fields of biometrics, data security, software development and facial recognition technology as well as policymakers and government officials will also want to purchase this book. .
Human rights --- Mathematical statistics --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- patroonherkenning --- factoranalyse --- privacy --- computerbeveiliging --- AI (artificiële intelligentie) --- Pattern recognition systems. --- Data protection --- Artificial intelligence. --- Automated Pattern Recognition. --- Privacy. --- Artificial Intelligence. --- Law and legislation.
Choose an application
This book constitutes the refereed proceedings at PAKDD Workshops 2013, affiliated with the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Gold Coast, Australia in April 2013. The 47 revised full papers presented were carefully reviewed and selected from 92 submissions. The workshops affiliated with PAKDD 2013 include: Data Mining Applications in Industry and Government (DMApps), Data Analytics for Targeted Healthcare (DANTH), Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE), Biologically Inspired Techniques for Data Mining (BDM), Constraint Discovery and Application (CDA), Cloud Service Discovery (CloudSD).
Information retrieval --- Human medicine --- Computer science --- Information systems --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- IR (information retrieval) --- cloud computing --- data mining --- computers --- informatiesystemen --- medische informatica --- database management --- KI (kunstmatige intelligentie) --- computerkunde --- robots --- data acquisition --- AI (artificiële intelligentie)
Choose an application
This book covers and makes four major contributions: 1) analyzing and surveying the pros and cons of current approaches for identifying rumor sources on complex networks; 2) proposing a novel approach to identify rumor sources in time-varying networks; 3) developing a fast approach to identify multiple rumor sources; 4) proposing a community-based method to overcome the scalability issue in this research area. These contributions enable rumor source identification to be applied effectively in real-world networks, and eventually diminish rumor damages, which the authors rigorously illustrate in this book. In the modern world, the ubiquity of networks has made us vulnerable to various risks. For instance, viruses propagate throughout the Internet and infect millions of computers. Misinformation spreads incredibly fast in online social networks, such as Facebook and Twitter. Infectious diseases, such as SARS, H1N1 or Ebola, have spread geographically and killed hundreds of thousands people. In essence, all of these situations can be modeled as a rumor spreading through a network, where the goal is to find the source of the rumor so as to control and prevent network risks. So far, extensive work has been done to develop new approaches to effectively identify rumor sources. However, current approaches still suffer from critical weaknesses. The most serious one is the complex spatiotemporal diffusion process of rumors in time-varying networks, which is the bottleneck of current approaches. The second problem lies in the expensively computational complexity of identifying multiple rumor sources. The third important issue is the huge scale of the underlying networks, which makes it difficult to develop efficient strategies to quickly and accurately identify rumor sources. These weaknesses prevent rumor source identification from being applied in a broader range of real-world applications. This book aims to analyze and address these issues to make rumor source identification more effective and applicable in the real world. The authors propose a novel reverse dissemination strategy to narrow down the scale of suspicious sources, which dramatically promotes the efficiency of their method. The authors then develop a Maximum-likelihood estimator, which can pin point the true source from the suspects with high accuracy. For the scalability issue in rumor source identification, the authors explore sensor techniques and develop a community structure based method. Then the authors take the advantage of the linear correlation between rumor spreading time and infection distance, and develop a fast method to locate the rumor diffusion source. Theoretical analysis proves the efficiency of the proposed method, and the experiment results verify the significant advantages of the proposed method in large-scale networks. This book targets graduate and post-graduate students studying computer science and networking. Researchers and professionals working in network security, propagation models and other related topics, will also be interested in this book.
Telecommunication technology --- Production management --- Mass communications --- Computer architecture. Operating systems --- Computer. Automation --- veiligheid (mensen) --- Facebook --- besmettelijke ziekten --- tekstverwerking --- computerbeveiliging --- computernetwerken --- communicatietechnologie
Choose an application
A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Choose an application
Listing 1 - 9 of 9 |
Sort by
|