Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed. The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs. · Enables readers to understand long-term reliability of an integrated circuit; · Reviews CMOS unreliability effects, with focus on those that will emerge in future CMOS nodes; · Provides overview of models for key aging effects, as well as compact models that can be included in a circuit simulator, with model parameters for advanced CMOS technology; · Describes existing reliability simulators, along with techniques to analyze the impact of process variations and aging on an arbitrary analog circuit.
Chemical structure --- Electronics --- Electrical engineering --- Applied physical engineering --- Biotechnology --- nanotechniek --- biotechnologie --- elektronica --- ingenieurswetenschappen --- elektrische circuits
Choose an application
Materials sciences --- Electronics --- Production management --- Computer. Automation --- DFMA (design for manufacture and assembly) --- informatica --- elektronica
Choose an application
Computational intelligence techniques are becoming more and more important for automated problem solving nowadays. Due to the growing complexity of industrial applications and the increasingly tight time-to-market requirements, the time available for thorough problem analysis and development of tailored solution methods is decreasing. There is no doubt that this trend will continue in the foreseeable future. Hence, it is not surprising that robust and general automated problem solving methods with satisfactory performance are needed.
Choose an application
This book discusses both architecture- and circuit-level design aspects of voltage-controlled-oscillator (VCO)-based analog-to-digital converters (ADCs), especially focusing on mitigation of VCO nonlinearity and the improvement of power efficiency. It shows readers how to develop power-efficient complementary-metal-oxide-semiconductor (CMOS) ADCs for applications such as LTE, 802.11n, and VDSL2+. The material covered can also be applied to other specifications and technologies. Design of Power-Efficient Highly Digital Analog-to-Digital Converters for Next-Generation Wireless Communication Systems begins with a general introduction to the applications of an ADC in communications systems and the basic concepts of VCO-based ADCs. The text addresses a wide range of converter architectures including open- and closed-loop technologies. Special attention is paid to the replacement of power-hungry analog blocks with VCO-based circuits and to the mitigation of VCO nonline arity. Various MATLAB®/Simulink® models are provided for important circuit nonidealities, allowing designers and researchers to determine the required specifications for the different building blocks that form the systematic integrated-circuit design procedure. Five different VCO-based ADC design examples are presented, introducing innovations at both architecture and circuit levels. Of these designs, the best power efficiency of a high-bandwidth oversampling ADC is achieved in a 40 nm CMOS demonstration. This book is essential reading material for engineers and researchers working on low-power-analog and mixed-signal design and may be used by instructors teaching advanced courses on the subject. It provides a clear overview and comparison of VCO-based ADC architectures and gives the reader insight into the most important circuit imperfections.
Relation between energy and economics --- Telecommunication technology --- Electrical engineering --- Applied physical engineering --- Mass communications --- Matlab (informatica) --- energie (technologie) --- tekstverwerking --- ingenieurswetenschappen --- elektrische circuits --- communicatietechnologie
Choose an application
This book investigates the possible circuit solutions to overcome the temperature- and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations. Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface.All 6 implementations are subject to an elaborate study of frequency stability, phase noise, and power consumption. In the final chapter all blocks are compared to the state of the art. The main goals of this book are: • to provide a comprehensive overview of timing issues and solutions in wireless sensor networks; • to gain understanding of all underlying mechanisms by starting from the oscillator basics; • to provide and demonstrate a design strategy by describing the development of 6 state of the art process-, temperature- and supply voltage- independent building blocks and discussing the design trade-offs; • to demonstrate the reliability and functionality of the developed building blocks by integrating them in a complete, autonomous, flexible wireless tag; • to be a reference work for beginners as well as more experienced oscillator and ultra-low-power circuit design engineers.
Electrical engineering --- Applied physical engineering --- Mass communications --- elektrotechniek --- elektrische circuits --- communicatietechnologie
Choose an application
This book demonstrates why highly-digital CMOS time-encoding analog-to-digital converters incorporating voltage-controlled oscillators (VCOs) and time-to-digital converters (TDCs) are a good alternative to traditional switched-capacitor S-D modulators for power-efficient sensor, biomedical and communications applications. The authors describe the theoretical foundations and design methodology of such time-based ADCs from the basics to the latest developments. While most analog designers might notice some resemblance to PLL design, the book clearly highlights the differences to standard PLL circuit design and illustrates the design methodology with practical circuit design examples. Describes in detail the design methodology for CMOS time-encoding analog-to-digital converters that can be integrated along with digital logic in a nanometer System on Chip; Assists analog designers with the necessary change in design paradigm, highlighting differences between designing time-based ADCs and traditional analog circuits like switched-capacitor converters and PLLs; Uses a highly-visual, tutorial approach to the topic, including many practical examples of techniques introduced.
Choose an application
Electronics --- Electrical engineering --- Computer architecture. Operating systems --- elektronica --- architectuur (informatica) --- elektrische circuits
Choose an application
Electrical engineering --- Programming --- Information systems --- systeemontwikkeling (informatica) --- methodologieën --- elektrische circuits
Choose an application
Electrical engineering --- Computer architecture. Operating systems --- Computer. Automation --- embedded systems --- algoritmen --- elektrische circuits
Listing 1 - 9 of 9 |
Sort by
|