Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. .
Algebra --- Operational research. Game theory --- Mathematics --- Applied physical engineering --- Engineering sciences. Technology --- Computer science --- Computer. Automation --- algebra --- lineaire algebra --- analyse (wiskunde) --- toegepaste wiskunde --- matrices --- computers --- economie --- informatica --- speltheorie --- wiskunde --- ingenieurswetenschappen --- computerkunde
Choose an application
Number theory --- Algebra --- Geometry --- algebra --- landmeetkunde --- getallenleer --- geometrie
Choose an application
Choose an application
Number theory --- Algebra --- Geometry --- Mathematical analysis --- Discrete mathematics --- Mathematics --- algebra --- analyse (wiskunde) --- discrete wiskunde --- wiskunde --- getallenleer --- geometrie
Choose an application
Number theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject. Key features of Number Theory: Structures, Examples, and Problems: * A rigorous exposition starts with the natural numbers and the basics. * Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties. * Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered. * Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems. * Glossary, bibliography, and comprehensive index round out the text. Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.
Number theory --- Algebra --- Discrete mathematics --- Mathematics --- algebra --- discrete wiskunde --- wiskunde --- getallenleer
Choose an application
This signficantly revised and expanded second edition of Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory from numerous mathematical competitions and journals have been selected and updated. The problems are clustered by topic into self-contained sections with solutions provided separately. Historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on creative solutions to open-ended problems. New to the second edition: * Completely rewritten discussions precede each of the 30 units, adopting a more user-friendly style with more accessible and inviting examples * Many new or expanded examples, problems, and solutions * Additional references and reader suggestions have been incorporated Featuring enhanced motivation for advanced high school and beginning college students, as well as instructors and Olympiad coaches, this text can be used for creative problem-solving courses, professional teacher development seminars and workshops, self-study, or as a training resource for mathematical competitions. ----- This [book] is ¦much more than just another collection of interesting, challenging problems, but is instead organized specifically for learning. The book expertly weaves together related problems, so that insights gradually become techniques, tricks slowly become methods, and methods eventually evolve into mastery ¦. The book is aimed at motivated high school and beginning college students and instructors...I strongly recommend this book for anyone interested in creative problem-solving in mathematics ¦. It has already taken up a prized position in my personal library, and is bound to provide me with many hours of intellectual pleasure. The Mathematical Gazette (Review of the First Edition)
Mathematical logic --- Number theory --- Algebra --- Geometry --- Discrete mathematics --- Mathematics --- algebra --- discrete wiskunde --- wiskunde --- logica --- getallenleer --- geometrie
Choose an application
Mathematical logic --- Number theory --- Geometry --- Discrete mathematics --- Mathematics --- landmeetkunde --- discrete wiskunde --- wiskunde --- getallenleer
Choose an application
It is impossible to imagine modern mathematics without complex numbers. The second edition of Complex Numbers from A to … Z introduces the reader to this fascinating subject that, from the time of L. Euler, has become one of the most utilized ideas in mathematics. The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them. The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. Many new problems and solutions have been added in this second edition. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented. The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.
Mathematics --- Number theory --- Algebraic geometry --- Geometry --- landmeetkunde --- wiskunde --- getallenleer --- geometrie
Choose an application
This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quadratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons. Reviews of the first edition: The reviewer recommends this book to all students curious about the force of mathematics, especially those who are bored at school and ready for a challenge. Teachers would find this book to be a welcome resource, as will contest organizers. —Teodora-Liliana Radulescu, Zentralblatt MATH, Vol. 1122 (24), 2007 …This extraordinary book can be read for fun. However, it can also serve as a textbook for preparation for the Putnam … for an advanced problem-solving course, or even as an overview of undergraduate mathematics. … it could certainly serve as a great review for senior-level students. — Donald L. Vestal, MathDL, December, 2007.
Number theory --- Algebra --- Differential geometry. Global analysis --- Geometry --- Mathematical analysis --- Discrete mathematics --- algebra --- analyse (wiskunde) --- discrete wiskunde --- statistiek --- getallenleer --- geometrie
Choose an application
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Number theory --- Algebra --- algebra --- getallenleer
Listing 1 - 10 of 15 | << page >> |
Sort by
|