Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Inclusions fluides. --- Spectroscopie Raman --- Pétrogenèse. --- Fluid inclusions --- Raman spectroscopy. --- Petrogenesis. --- Analysis.
Choose an application
In this work, we present a method of molecular imaging characterisation aimed towards space materials. We cover the method from sample preparation to data treatment and analysis.
Raman spectroscopy --- Imaging --- Mass spectrometry --- MSI --- Space science --- Chemometry --- Biocrust --- Lichen --- Meteorite --- Physique, chimie, mathématiques & sciences de la terre > Chimie
Choose an application
Ionic Liquids (ILs) are molten salts at room temperature (<100°C) with particular physico-chemical properties of interest for the chemical industry. They exhibit properties that classify them as green solvents, such as non-volatility. Additionally, they possess super-acidity, enabling them to replace conventional molecular solvents and paving the way for various applications like catalysis and synthesis. Given the current European legislations, such as REACH, ionic liquids were identified as an alternative to polluting volatile organic solvents. Therefore, to gain a deeper understanding of these unique solvents, particularly their super-acidic nature, this Master thesis focuses on the experimental estimation of proton solvation energy in the ionic liquid [BMIm][OTf] using Raman and UV-visible spectroscopy, employing the Hammett acidity function. The first part explores the use of different nitroanilines as pH indicators in the [BMIm][OTf] to determine the Hammett acidity function values with the gradual addition of a strong acid (HOTf). The Results indicate that the determined acidity is apparent due to the influence of basicity and the concentration of pH-reporter on the proton solvation energy, along with the formation of ion pairs in the medium. The second part of this thesis addresses initial attempts to study proton transfer from a pH-sensitive molecule adsorbed on silver-coated gold nanoparticles using surface-enhanced Raman spectroscopy (SERS) directly in [BMIm][OTf]. The use of SERS aims to mitigate the impact of interactions between pH indicators and improve acidity characterization.
Ionic liquids --- Raman spectroscopy --- Acidity --- SERS --- Nanoparticles --- UV-Visible spectroscopy --- Physique, chimie, mathématiques & sciences de la terre > Chimie
Choose an application
Biological samples are extremely complex molecular systems. Indeed, their molecular microstructure can be very intricate and heterogeneous. Thus, the analysis of such samples requires analytical techniques providing a high spatial resolution and information on the chemical composition at a molecular level. To this end, the use of multimodal imaging is a promising avenue as it may provide solutions to overcome the limitations of single techniques. The project is devoted to the investigation of multimodal molecular imaging combining vibrational spectroscopy and mass spectrometry, for the study of biological samples, which is of particular interest in the fields of life science, medicine and environment. We first investigated the fundamental desorption/ionisation processes taking place in Surface-Assisted Laser Desorption/Ionisation Mass Spectrometry (SALDI-MS) using various nanoparticles as substrates and p-methoxybenzylpyridinium salt. The amount of detected ions and the observed survival yield in SALDI was found significantly different to what was observed in MALDI. SALDI led to more fragmentation than MALDI, which may complicate the interpretation of SALDI data. We also implemented classical Raman spectroscopy, Surface-Enhanced Raman spectroscopy, MALDI-MS and SALDI-MS imaging on two kinds of biological tissues: a model tissue of mouse brain and a bacterial biofilm. Critical experimental aspects, related to sample preparation, spectral data acquisition and data treatment leading to the generation of molecular images are discussed. Les échantillons biologiques sont des systèmes moléculaires extrêmement complexes. En effet, leur microstructure moléculaire peut être très complexe et hétérogène. Ainsi, l'analyse de tels échantillons nécessite l’utilisation de techniques d'analyse offrant une haute résolution spatiale et des informations sur la composition chimique au niveau moléculaire. Ainsi, l’utilisation de l’imagerie multimodale semble prometteuse dans la mesure où elle pourrait apporter des solutions pour surmonter les limites propres à une seule technique. Le projet est dédié à l’application de l'imagerie moléculaire multimodale, combinant spectroscopie vibrationnelle et spectrométrie de masse, pour l'étude d'échantillons biologiques, ce qui présente un intérêt particulier dans les domaines des sciences de la vie, de la médecine et de l'environnement. Nous avons d’abord étudié les processus fondamentaux de désorption/ionisation se déroulant en spectrométrie de masse par désorption/ionisation laser assistée par surface (SALDI-MS) en utilisant diverses nanoparticules comme substrats et un sel de p-méthoxybenzylpyridinium. La quantité d'ions détectés et le taux de survie des ions observés en SALDI sont significativement différents de ceux observés en MALDI. Les processus SALDI entrainent également plus de fragmentation qu’en MALDI, ce qui peut compliquer l'interprétation des données SALDI. Nous avons également utilisé l’imagerie par spectroscopie Raman classique, spectroscopie Raman exaltée de surface, MALDI-MS et SALDI-MS sur deux types de tissus biologiques: un tissu modèle de cerveau de souris et un biofilm bactérien. Les aspects expérimentaux critiques liés à la préparation des échantillons, à l’acquisition des données spectrales et au traitement des données conduisant à la génération d’images moléculaires sont discutés dans ce mémoire.
Raman Spectroscopy --- SERS --- MALDI-MS --- SALDI-MS --- Mass Spectrometry --- Nanoparticles --- Biofilms --- Biological samples --- Molecular imaging --- Physique, chimie, mathématiques & sciences de la terre > Chimie
Listing 1 - 4 of 4 |
Sort by
|