Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Nanoscience and Its Applications explores how nanoscience is used in modern industry to increase product performance, including an understanding of how these materials and systems, at the molecular level, provide novel properties and physical, chemical, and biological phenomena that have been successfully used in innovative ways in a wide range of industries. This book is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a greater understanding on how nanoscience can be used in modern industries. Provides a detailed overview of how nanoscience is used to increase product efficiency in a variety of fields, from agribusiness to medicine, Shows how nanoscience can help product developers increase product performance whilst reducing costs Illustrates how nanoscience has been used innovatively in a great variety of disciplines, giving those working in many different industries ideas as to how nanoscience might answer important questions
Choose an application
This Handbook covers the fundamental aspects, experimental setup, synthesis, properties, and characterization of different nanocelluloses. It also explores the technology challenges of nanocelluloses and the emerging applications and the global markets of nanocelluloses-based systems. In particular, this book: · Covers the history of nanocelluloses, types and classifications, fabrication techniques, critical processing parameters, physical and chemical properties, surface functionalization, and other treatments to allow practical applications. · Covers all recent aspects of nanocelluloses technologies, from experimental set-up to industrial applications. · Includes new physical, chemical and biological techniques for nanocelluloses fabrication, in-depth treatment of their surface functionalization, and characterization. · Discusses the unique properties of nanocelluloses that can be obtained by modifying their diameter, morphology, composition and dispersion in other materials. · Discusses the properties and morphology of several kinds of dispersion in polymeric materials, such as micro/nanofiberlated cellulose, cellulose nanofibers, cellulose nanocrystals, amorphous cellulose nanoparticles, and hybrid cellulose nanomaterials. · Presents the different techniques for dispersion, and self-assembly of polymeric materials, critical parameters of synthesis, modelling and simulation, and characterization methods. · Highlights a wide range of emerging applications of nanocelluloses, e.g. drug delivery, tissue engineering, medical implants, medical diagnostics and therapy, biosensors, catalysis, energy harvesting, energy storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace and many more. · Provides an outlook on the opportunities and challenges for the fabrication and manufacturing of nanocelluloses in industry. · Provides an in-depth look at the nature of nanocelluloses in terms of their applicability for industrial uses. · Provides in-depth insight and review on most recent types of nanocelluloses-based systems of unique structures and compositions. · Highlights the challenges and interdisciplinary perspective of nanocelluloses-based systems in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications. - Demonstrates how cutting-edge developments in nanofibers translate into real-world innovations in a range of industry sectors. This Handbook is a valuable reference for materials scientists, biologists, physicians, chemical, biomedical, manufacturing and mechanical engineers working in R&D industry and academia, who want to learn more about how nanocelluloses-based systems are commercially applied.
Macromolecules --- nanotechniek --- polymeren --- Nanoscience. --- Natural products. --- Polymers. --- Nanophysics. --- Natural Products.
Choose an application
This book highlights recent advances in variety of nanomaterials classes including metal chalcogenides, metal oxides/hydroxides, polymer, metal-organic frameworks, and hybrid nanostructures, with a focus on their properties, synthesis methods, and key applications. It also offers detailed coverage on the toxicity aspects with possible solution. Additionally, it provides complete and comprehensive information on surface modification strategies of nanoparticles to achieve desired outcomes. This book discusses potential applications and major challenges of using these nanomaterials in the fields of biomedical sciences, agricultural industry, bioenergy, biofuel production, and environmental remediation, etc. Overall, this book provides crucial background in nanobiotechnology that compliments the understanding of experimental design for the production of more customized nanomaterials to avail desirable benefits.
Chemical structure --- Electrical engineering --- Biotechnology --- nanotechniek --- biotechnologie --- Nanotechnology. --- Nanoscience. --- Biotechnology. --- Sustainability. --- Nanoscale Design, Synthesis and Processing. --- Nanophysics. --- Nanoengineering. --- Nanotechnology --- Environmental Sciences --- Nanoscience --- Science --- Technology & Engineering
Choose an application
This book provides a selection of recent developments in scanning ion conductance microscopy (SICM) technology and applications. In recent years, SICM has been applied in an ever-increasing number of areas in the bioanalytical sciences. SICM is based on an electrolyte-filled nanopipette with a nanometer-scale opening, over which an electric potential is applied. The induced ion current is measured, which allows to directly or indirectly quantify various physical quantities such as pipette-sample distance, ion concentration, sample elastic modulus among many others. This makes SICM well suited for applications in electrolytes - most prominently for the study of live cells. This book starts with a historic overview starting from the days of the invention of SICM by Paul Hansma at the University of California at Santa Barbara in 1989. SICM is a member of the family of scanning probe microscopies. It is related to another prominent member of the family, atomic force microscopy (AFM), which has found application in almost any field of nanoscale science. The advantages and disadvantages of SICM over AFM are also outlined. One of the most effective and break-through applications of SICM nanopipettes is in electrochemistry. The different routes and applications for doing electrochemistry using nanopipettes are also discussed. In addition the book highlights the ability of SICM for surface positioning with nanometer precision to open up new vistas in patch clamp measurements subcellular structures. Finally the book presents one research area where SICM has been making a lot of contributions, cardiac research and the endeavors to combine SICM with super-resolution optical microscopy for highest-resolution joint topography and functional imaging.
Optics. Quantum optics --- Analytical chemistry --- General biophysics --- biologische materialen --- biofysica --- nanotechniek --- analytische chemie --- microscopie --- Materials --- Analytical chemistry. --- Biophysics. --- Nanoscience. --- Biomaterials. --- Cells. --- Microscopy. --- Analytical Chemistry. --- Nanoscale Biophysics. --- Biomaterials-Cells.
Choose an application
This book discusses the synthesis of catalytic materials with improved and tailored functionalities via the sol-gel method. Beginning with a general outline of traditional sol-gel chemistry, the book gradually explores surrounding topics, such as the formation of porous structures, while guiding the overall discussion toward the synthesis of heterogeneous catalysts and focusing throughout on the structure-activity relationship in catalytic materials. Featuring several case studies covering major current industrial applications, the book is an ideal guide for researchers looking to tailor catalytic materials for a specific catalytic process and thus exploiting the versatility of the “traditional” sol-gel method.
Chemical thermodynamics --- Physicochemistry --- Enzymology --- Applied physical engineering --- katalyse --- nanotechniek --- fysicochemie --- Gels. --- Physical chemistry. --- Catalysis. --- Materials. --- Nanoscience. --- Materials—Analysis. --- Gels and Hydrogels. --- Physical Chemistry. --- Catalytic Materials. --- Nanophysics. --- Materials Characterization Technique. --- Colloids.
Choose an application
This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.
Optics. Quantum optics --- Electronics and optics of solids --- Solid state physics --- Physics --- Surface chemistry --- Chemical structure --- Electronics --- Applied physical engineering --- Biotechnology --- oppervlaktechemie --- thermodynamica --- oppervlakte-onderzoek --- nanotechniek --- biotechnologie --- ingenieurswetenschappen --- fysica --- transistoren --- halfgeleiders --- microwaves --- Surfaces (Physics). --- Interfaces (Physical sciences). --- Thin films. --- Optical materials. --- Electronic materials. --- Nanotechnology. --- Materials—Surfaces. --- Nanoscale science. --- Nanoscience. --- Nanostructures. --- Surface and Interface Science, Thin Films. --- Optical and Electronic Materials. --- Nanotechnology and Microengineering. --- Surfaces and Interfaces, Thin Films. --- Nanoscale Science and Technology.
Listing 1 - 6 of 6 |
Sort by
|