Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.
Applied physical engineering --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- computervisie --- neuronale netwerken --- beeldverwerking --- fuzzy logic --- cybernetica --- biometrie --- KI (kunstmatige intelligentie) --- ingenieurswetenschappen --- robots --- AI (artificiële intelligentie)
Choose an application
The growth in the Bioinformatics and Computational Biology fields over the last few years has been remarkable and the trend is to increase its pace. In fact, the need for computational techniques that can efficiently handle the huge amounts of data produced by the new experimental techniques in Biology is still increasing driven by new advances in Next Generation Sequencing, several types of the so called omics data and image acquisition, just to name a few. The analysis of the datasets that produces and its integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Within this scenario of increasing data availability, Systems Biology has also been emerging as an alternative to the reductionist view that dominated biological research in the last decades. Indeed, Biology is more and more a science of information requiring tools from the computational sciences. In the last few years, we have seen the surge of a new generation of interdisciplinary scientists that have a strong background in the biological and computational sciences. In this context, the interaction of researchers from different scientific fields is, more than ever, of foremost importance boosting the research efforts in the field and contributing to the education of a new generation of Bioinformatics scientists. PACBB‘13 hopes to contribute to this effort promoting this fruitful interaction. PACBB'13 technical program included 19 papers from a submission pool of 32 papers spanning many different sub-fields in Bioinformatics and Computational Biology. Therefore, the conference will certainly have promoted the interaction of scientists from diverse research groups and with a distinct background (computer scientists, mathematicians, biologists). The scientific content will certainly be challenging and will promote the improvement of the work that is being developed by each of the participants. .
Biomathematics. Biometry. Biostatistics --- Molecular biology --- Applied physical engineering --- Programming --- Artificial intelligence. Robotics. Simulation. Graphics --- neuronale netwerken --- fuzzy logic --- cybernetica --- bio-informatica --- machine learning --- biometrie --- KI (kunstmatige intelligentie) --- ingenieurswetenschappen --- robots --- moleculaire biologie --- AI (artificiële intelligentie)
Choose an application
This book introduces readers to the current trends in using deep learners and deep learner descriptors for medical applications. It reviews the recent literature and presents a variety of medical image and sound applications to illustrate the five major ways deep learners can be utilized: 1) by training a deep learner from scratch (chapters provide tips for handling imbalances and other problems with the medical data); 2) by implementing transfer learning from a pre-trained deep learner and extracting deep features for different CNN layers that can be fed into simpler classifiers, such as the support vector machine; 3) by fine-tuning one or more pre-trained deep learners on an unrelated dataset so that they are able to identify novel medical datasets; 4) by fusing different deep learner architectures; and 5) by combining the above methods to generate a variety of more elaborate ensembles. This book is a value resource for anyone involved in engineering deep learners for medical applications as well as to those interested in learning more about the current techniques in this exciting field. A number of chapters provide source code that can be used to investigate topics further or to kick-start new projects. .
Listing 1 - 3 of 3 |
Sort by
|