Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

LUCA School of Arts (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2013 (1)

2009 (1)

Listing 1 - 2 of 2
Sort by

Book
Student's t-distribution and related stochastic processes
Author:
ISSN: 2191544X ISBN: 3642311458 9786613943347 3642311466 1283630893 Year: 2013 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained.


Book
Self-normalized processes : limit theory and applications
Authors: --- ---
ISBN: 3540856358 3642099262 9786611950965 1281950963 3540856366 Year: 2009 Publisher: Berlin : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long period of slow development. In recent years there have been a number of important advances in the theory and applications of self-normalized processes. Some of these developments are closely linked to the study of central limit theorems, which imply that self-normalized processes are approximate pivots for statistical inference. The present volume covers recent developments in the area, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales. This is the first book that systematically treats the theory and applications of self-normalization.

Listing 1 - 2 of 2
Sort by