Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The surreal numbers form a system which includes both the ordinary real numbers and the ordinals. Since their introduction by J. H. Conway, the theory of surreal numbers has seen a rapid development revealing many natural and exciting properties. These notes provide a formal introduction to the theory in a clear and lucid style. The the author is able to lead the reader through to some of the problems in the field. The topics covered include exponentiation and generalized e-numbers.
Surreal numbers. --- Number theory. --- Number study --- Numbers, Theory of --- Algebra --- Numbers, Surreal --- Number theory
Choose an application
In this volume, a tower of surreal number fields is defined, each being a real-closed field having a canonical formal power series structure and many other higher order properties. Formal versions of such theorems as the Implicit Function Theorem hold over such fields. The Main Theorem states that every formal power series in a finite number of variables over a surreal field has a positive radius of hyper-convergence within which it may be evaluated. Analytic functions of several surreal and surcomplex variables can then be defined and studied. Some first results in the one variable case are d
Surreal numbers. --- Algebraic fields. --- Mathematical analysis. --- 517.1 Mathematical analysis --- Mathematical analysis --- Algebraic number fields --- Algebraic numbers --- Fields, Algebraic --- Algebra, Abstract --- Algebraic number theory --- Rings (Algebra) --- Numbers, Surreal --- Number theory --- Algebraic fields --- 517.1 --- Surreal numbers
Choose an application
In this volume, a tower of surreal number fields is defined, each being a real-closed field having a canonical formal power series structure and many other higher order properties. Formal versions of such theorems as the Implicit Function Theorem hold over such fields. The Main Theorem states that every formal power series in a finite number of variables over a surreal field has a positive radius of hyper-convergence within which it may be evaluated. Analytic functions of several surreal and surcomplex variables can then be defined and studied. Some first results in the one variable case are derived. A primer on Conway's field of surreal numbers is also given.Throughout the manuscript, great efforts have been made to make the volume fairly self-contained. Much exposition is given. Many references are cited. While experts may want to turn quickly to new results, students should be able to find the explanation of many elementary points of interest. On the other hand, many new results are given, and much mathematics is brought to bear on the problems at hand.
Surreal numbers. --- Algebraic fields. --- Mathematical analysis. --- Surreal numbers --- Corps algébriques --- Analyse mathématique --- 517.13 --- Algebraic fields --- Mathematical analysis --- Numbers, Surreal --- Number theory --- Advanced calculus --- Analysis (Mathematics) --- Algebra --- Algebraic number fields --- Algebraic numbers --- Fields, Algebraic --- Algebra, Abstract --- Algebraic number theory --- Rings (Algebra) --- Theory of real numbers --- 517.1 Mathematical analysis --- 517.13 Theory of real numbers --- 517.1. --- 517.1
Choose an application
Mathematical logic --- 517.13 --- Number theory --- Surreal numbers --- Numbers, Surreal --- Number study --- Numbers, Theory of --- Algebra --- 517.13 Theory of real numbers --- Theory of real numbers --- Théorie des nombres
Choose an application
Number theory --- Surreal numbers --- Théorie des nombres --- Number Theory --- 511 --- 517.13 --- #KOPO:Prof. R. Holvoet --- Numbers, Surreal --- Number study --- Numbers, Theory of --- Algebra --- Theory of real numbers --- 517.13 Theory of real numbers --- 511 Number theory --- Théorie des nombres --- Mathématiques --- Philosophie
Choose an application
The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books exploring puzzles and brainteasers, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics. Contributors to the book show how sophisticated mathematics can help construct mazes that look like famous people, how the analysis of crossword puzzles has much in common with understanding epidemics, and how the theory of electrical circuits is useful in understanding the classic Towers of Hanoi puzzle. The card game SET is related to the theory of error-correcting codes, and simple tic-tac-toe takes on a new life when played on an affine plane. Inspirations for the book's wealth of problems include board games, card tricks, fake coins, flexagons, pencil puzzles, poker, and so much more. Looking at a plethora of eclectic games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.
Mathematical recreations. --- Mathematical recreations --- Research. --- Mathematical puzzles --- Number games --- Recreational mathematics --- Recreations, Mathematical --- Puzzles --- Scientific recreations --- Games in mathematics education --- Magic squares --- Magic tricks in mathematics education --- Mathematics. --- Mathematic --- Amazing Asteroid. --- Atoll. --- Begird. --- Bernstein's Bijection. --- Chromatic Combat. --- Cookie Monster number. --- Cookie Monster. --- Devious Dice. --- Eluding Execution. --- EndGame. --- Fibonacci sequence. --- Flipping Fun. --- Flush. --- Full House. --- Get the Giraffe. --- Gilbreath numbers. --- Gilbreath permutations. --- Graeco-Latin squares. --- Hamming weight. --- Heartless Poker. --- Hex. --- Knop's puzzle. --- Leonhard Euler. --- Norman Gilbreath. --- SET. --- Sperner's Lemma. --- Straight. --- Super-n-nacci sequence. --- The Game of Y. --- The New York Times. --- Tower of Hanoi. --- Traveling Salesman Problem. --- Tribonacci sequence. --- Zeckendorf representation. --- advanced mathematics. --- affine plane. --- affine planes. --- algorithms. --- baseball. --- card effects. --- card games. --- card moves. --- card tricks. --- chess. --- coding theory. --- coin-weighing puzzles. --- connection games. --- continued fractions. --- cookies. --- coupling. --- crossword networks. --- crossword puzzle difficulty. --- crossword puzzles. --- decomposition. --- delta-to-wye transformation. --- dissection puzzles. --- divination puzzles. --- dualism. --- electrical power distribution. --- epidemics. --- error correction. --- error detection. --- error-correcting codes. --- find-and-label problem. --- flexagons. --- folding puzzles. --- game-theoretic perspective. --- generalizations. --- generator assignment. --- graphical objects. --- group structures. --- ice cream trick. --- infinite families. --- iterative stochastic process. --- just-find problem. --- linear code. --- magic tricks. --- mathematical exhibits. --- mathematical puzzles. --- maze design. --- mazes. --- minimum spanning tree. --- multiple-pans problem. --- museums. --- n-nacci sequence. --- network properties. --- network structure. --- one-move puzzles. --- packing puzzles. --- parallel scales. --- parallel weighing problem. --- period-four move. --- period-four principles. --- phyllotactic mazes. --- playing cards. --- poker. --- probability. --- random graph process. --- random moves. --- random walks. --- rearrangement puzzles. --- recreational mathematics. --- recreational problems. --- seeded stippling. --- simple objects. --- simplex. --- squash. --- surreal numbers. --- symmetries. --- tetraflexagons. --- tic-tac-toe. --- unique solutions. --- vortex tiles. --- weighing puzzles. --- winning strategies.
Listing 1 - 6 of 6 |
Sort by
|