Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.
single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance
Choose an application
This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.
Research & information: general --- Physics --- single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance
Choose an application
In 2019, we sent out a call for submissions to a Special Issue of Marine Drugs entitled “Marine Chitin 2019”, and we are pleased that this issue has now been published. Over 16 high-impact papers were included in this issue, which we now plan to publish as a book. In addition, we now seek to publish a further Special Issue of Marine Drugs, “Marine Chitin 2020–2021”. As before, we plan to produce an authoritative and exciting issue that will encompass breakthroughs in scientific and industrial chitin and chitosan research. Significant advances in chitin and chitosan research have been made since the 1970s, and current overviews in recent publications involving chitin and chitosan research advances are in need of an update.
chitosan hydrogel --- chitosan --- biotechnology --- RAW264.7 macrophage --- ?-glucosidase inhibitor --- bromotyrosines --- layer-by-layer film --- amphiphilic polymer --- conjugation --- marine resources --- antioxidant activity --- chitooligosaccharides --- methylene blue --- nanoparticles --- bulk density --- Eudragit® S100 --- lytic polysaccharide monooxygenase --- chitosan oleate salt --- curcumin --- RAW 264.7 cells --- antioxidant --- crude oil --- ball milling --- anti-inflammatory action --- enzymatic modification --- dissolution --- vaginal infections --- Hausner ratio --- crushing strength --- Staphylococcus epidermidis --- mucoadhesive film --- Caco-2 cell culture --- chitosan lactate --- 2D correlation spectroscopy --- chitosan citrate --- direct compression --- chitosan oligomers --- chitin deacetylase --- Pseudomonas aeruginosa --- collagen --- blood --- express method --- sodium carbonate --- HIV sexual transmission --- streptomycin --- antibacterial activity --- pork sausage --- nanocomposites --- chitosanase --- Clostridium perfringens --- chitinase --- mucoadhesion --- chitosan oligosaccharides --- chitosan tartrate --- Staphylococcus aureus --- immunostimulatory activity --- derivatization --- pH responsive release --- soluble chitosan complex --- chitin --- polymer film --- compression work --- wound treatment --- biofilms --- roller compaction --- mitogen-activated protein kinases (MAPK) --- Paenibacillus --- chitooligosaccharide --- mechanical property --- protease --- Polybius henslowii --- scaffolds --- electrospinning --- chitosan-coated liposomes --- phosphoinositide 3-kinases (PI3K)/Akt --- cytotoxicity --- polymorph --- vaginal preexposure prophylaxis --- Aplysina archeri --- antifungal activity --- PLGA --- Kawakita analysis --- marine sponges --- Tenofovir controlled release --- nile red
Listing 1 - 3 of 3 |
Sort by
|