Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (6)

Listing 1 - 6 of 6
Sort by

Book
Advances in Plasma Processes for Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.

Keywords

Technology: general issues --- Chemical engineering --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

Technology: general issues --- History of engineering & technology --- fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc-Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc-Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability


Book
Advances in Plasma Processes for Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.

Keywords

Technology: general issues --- Chemical engineering --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

Technology: general issues --- History of engineering & technology --- fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model


Book
Advances in Plasma Processes for Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.

Keywords

polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film

Listing 1 - 6 of 6
Sort by