Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULiège (8)

VIVES (8)

Vlaams Parlement (8)

More...

Resource type

book (19)


Language

English (19)


Year
From To Submit

2022 (3)

2021 (5)

2020 (9)

2019 (1)

2013 (1)

Listing 1 - 10 of 19 << page
of 2
>>
Sort by

Book
Image Analysis and Evaluation of Cylinder Bore Surfaces in Micrographs
Author:
ISBN: 1000041878 3731502399 Year: 2013 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This work presents two image-based inspection approaches for the quality evaluation of cylinder bore surfaces. In the first algorithm, metal folds on plateau-honed surfaces are inspected with scanning electron microscopy. An edge-aware structure tensor is proposed for feature extraction and localization of surface defects. The second algorithm uses a morphgraphical method for detecting graphite grains in optical micrographs. Based on the inspection results, quality parameters are proposed.


Book
Algorithms for Fault Detection and Diagnosis
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions.


Book
Remote Sensing in Coastline Detection
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coastal environments are dynamic ecosystems, where erosion is influenced by meteorological/climatic, geological, biological, and anthropic factors. Erosion has worrying effects on the environment, infrastructure, lifelines, and buildings. Furthermore, climate change is exacerbating an already fragile situation. We are witnessing a high-risk situation and are convinced that this is the most appropriate time to focus on state-of-the-art remote sensing techniques for shoreline monitoring. The improvements in the spatial and spectral resolution of current and next generation satellite-based sensors and the significant progress in the spatial data processing identify remote sensing techniques that increase our knowledge of territory and coastline. This Special Issue aims to highlight an overview of all multiscale remote sensing techniques (e.g., high resolution images, photogrammetry, SAR, etc.) and a whole array of methods and techniques that process, analyse, and discuss multitemporal remotely sensed data. Thank you to all of our contributors and authors for their interesting and illuminating studies. Since this topic is complex and dynamic, we hope to develop this research with future works to form more cutting-edge studies.


Book
Remote Sensing in Coastline Detection
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coastal environments are dynamic ecosystems, where erosion is influenced by meteorological/climatic, geological, biological, and anthropic factors. Erosion has worrying effects on the environment, infrastructure, lifelines, and buildings. Furthermore, climate change is exacerbating an already fragile situation. We are witnessing a high-risk situation and are convinced that this is the most appropriate time to focus on state-of-the-art remote sensing techniques for shoreline monitoring. The improvements in the spatial and spectral resolution of current and next generation satellite-based sensors and the significant progress in the spatial data processing identify remote sensing techniques that increase our knowledge of territory and coastline. This Special Issue aims to highlight an overview of all multiscale remote sensing techniques (e.g., high resolution images, photogrammetry, SAR, etc.) and a whole array of methods and techniques that process, analyse, and discuss multitemporal remotely sensed data. Thank you to all of our contributors and authors for their interesting and illuminating studies. Since this topic is complex and dynamic, we hope to develop this research with future works to form more cutting-edge studies.


Book
Algorithms for Fault Detection and Diagnosis
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions.


Book
Remote Sensing in Coastline Detection
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coastal environments are dynamic ecosystems, where erosion is influenced by meteorological/climatic, geological, biological, and anthropic factors. Erosion has worrying effects on the environment, infrastructure, lifelines, and buildings. Furthermore, climate change is exacerbating an already fragile situation. We are witnessing a high-risk situation and are convinced that this is the most appropriate time to focus on state-of-the-art remote sensing techniques for shoreline monitoring. The improvements in the spatial and spectral resolution of current and next generation satellite-based sensors and the significant progress in the spatial data processing identify remote sensing techniques that increase our knowledge of territory and coastline. This Special Issue aims to highlight an overview of all multiscale remote sensing techniques (e.g., high resolution images, photogrammetry, SAR, etc.) and a whole array of methods and techniques that process, analyse, and discuss multitemporal remotely sensed data. Thank you to all of our contributors and authors for their interesting and illuminating studies. Since this topic is complex and dynamic, we hope to develop this research with future works to form more cutting-edge studies.

Keywords

History of engineering & technology --- DGPS measurements --- video camera observation --- shoreline position --- beach survey --- Sentinel-2 --- Remote Sensing --- habitat mapping --- mangroves --- coral reefs --- climate change --- vulnerable habitats --- side-scan sonar --- swath bathymetry --- habitat monitoring --- hurricane Sandy --- hurricane Joaquin --- shoreline detection --- remote sensing --- WorldView-2 --- Abruzzo --- multispectral classification --- shoreline --- coastline --- satellite images --- synthetic aperture radar (SAR) --- Sentinel-1 --- shoreline extraction --- coastline extraction --- active connection matrix (ACM) --- J-Net Dynamic --- edge detection --- canny edge detector --- coastline mapping --- geomatics --- SfM photogrammetry --- network RTK --- sea level rise --- coastlines --- 2100 --- storm surges --- heritage sites --- Pyrgi --- Mediterranean --- UAV --- DSM --- DGPS measurements --- video camera observation --- shoreline position --- beach survey --- Sentinel-2 --- Remote Sensing --- habitat mapping --- mangroves --- coral reefs --- climate change --- vulnerable habitats --- side-scan sonar --- swath bathymetry --- habitat monitoring --- hurricane Sandy --- hurricane Joaquin --- shoreline detection --- remote sensing --- WorldView-2 --- Abruzzo --- multispectral classification --- shoreline --- coastline --- satellite images --- synthetic aperture radar (SAR) --- Sentinel-1 --- shoreline extraction --- coastline extraction --- active connection matrix (ACM) --- J-Net Dynamic --- edge detection --- canny edge detector --- coastline mapping --- geomatics --- SfM photogrammetry --- network RTK --- sea level rise --- coastlines --- 2100 --- storm surges --- heritage sites --- Pyrgi --- Mediterranean --- UAV --- DSM


Book
Algorithms for Fault Detection and Diagnosis
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions.

Keywords

History of engineering & technology --- structural health monitoring --- digital image processing --- damage --- gray level co-occurrence matrix --- self-organization map --- rolling bearings --- fault diagnosis --- multiscale entropy --- amplitude-aware permutation entropy --- random forest --- reusable launch vehicle --- thruster valve failure --- thruster fault detection --- Kalman filter --- machine vision --- machine diagnostics --- instantaneous angular speed --- SURVISHNO 2019 challenge --- video tachometer --- motion tracking --- edge detection --- parametric template modeling --- adaptive template matching --- genetic algorithm --- misalignment --- fault prediction --- combined prediction --- multivariate grey model --- quantum genetic algorithm --- least squares support vector machine --- lithium-ion battery --- battery faults --- battery safety --- battery management system --- fault diagnostic algorithms --- structural health monitoring --- digital image processing --- damage --- gray level co-occurrence matrix --- self-organization map --- rolling bearings --- fault diagnosis --- multiscale entropy --- amplitude-aware permutation entropy --- random forest --- reusable launch vehicle --- thruster valve failure --- thruster fault detection --- Kalman filter --- machine vision --- machine diagnostics --- instantaneous angular speed --- SURVISHNO 2019 challenge --- video tachometer --- motion tracking --- edge detection --- parametric template modeling --- adaptive template matching --- genetic algorithm --- misalignment --- fault prediction --- combined prediction --- multivariate grey model --- quantum genetic algorithm --- least squares support vector machine --- lithium-ion battery --- battery faults --- battery safety --- battery management system --- fault diagnostic algorithms


Book
Innovative Methods and Materials in Structural Health Monitoring of Civil Infrastructures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past, when elements in sructures were composed of perishable materials, such as wood, the maintenance of houses, bridges, etc., was considered of vital importance for their safe use and to preserve their efficiency. With the advent of materials such as reinforced concrete and steel, given their relatively long useful life, periodic and constant maintenance has often been considered a secondary concern. When it was realized that even for structures fabricated with these materials that the useful life has an end and that it was being approached, planning maintenance became an important and non-negligible aspect. Thus, the concept of structural health monitoring (SHM) was introduced, designed, and implemented as a multidisciplinary method. Computational mechanics, static and dynamic analysis of structures, electronics, sensors, and, recently, the Internet of Things (IoT) and artificial intelligence (AI) are required, but it is also important to consider new materials, especially those with intrinsic self-diagnosis characteristics, and to use measurement and survey methods typical of modern geomatics, such as satellite surveys and highly sophisticated laser tools.

Keywords

Medicine --- structural health monitoring --- jointless bridge --- high-speed railway --- bearing --- expansion device --- displacement analysis --- structural reliability estimation --- modal identification --- finite element model updating --- cyber-physical systems --- crowdsourcing --- temperature effects --- time-lag effect --- Fourier series expansion --- box-girder bridges --- structural engineering --- overall deformation monitoring --- perspective transformation --- edge detection --- close-range photogrammetry --- railway embankment --- condition assessment --- ground penetrating radar --- multi-attribute utility theory --- laser scanner --- line scanner --- structure monitoring --- deformation --- dynamic measurements --- scan-to-BIM --- point cloud --- HBIM --- FEM --- Rhinoceros --- terrestrial laser scanner (TLS) --- ground-based real aperture radar (GB-RAR) --- vibration frequency --- spectral analysis --- displacement --- structural health monitoring (SHM) --- vibration-based damage detection --- system identification --- subspace system identification (SSI) --- tie rod --- natural frequencies --- mode shapes --- root-mean-square error (RMSE) --- environmental monitoring --- long-range mapping --- MMS --- sub-millimetric EDM geodetic techniques --- damage detection --- damage localization --- hybrid approach --- neural network --- timber bridges --- stress-laminated timber decks --- monitoring --- humidity-temperature sensors --- wood moisture content --- multi-phase models --- finite element method --- moving load identification --- strain influence line --- load transverse distribution --- strain integral coefficient --- identification error --- structural health monitoring --- jointless bridge --- high-speed railway --- bearing --- expansion device --- displacement analysis --- structural reliability estimation --- modal identification --- finite element model updating --- cyber-physical systems --- crowdsourcing --- temperature effects --- time-lag effect --- Fourier series expansion --- box-girder bridges --- structural engineering --- overall deformation monitoring --- perspective transformation --- edge detection --- close-range photogrammetry --- railway embankment --- condition assessment --- ground penetrating radar --- multi-attribute utility theory --- laser scanner --- line scanner --- structure monitoring --- deformation --- dynamic measurements --- scan-to-BIM --- point cloud --- HBIM --- FEM --- Rhinoceros --- terrestrial laser scanner (TLS) --- ground-based real aperture radar (GB-RAR) --- vibration frequency --- spectral analysis --- displacement --- structural health monitoring (SHM) --- vibration-based damage detection --- system identification --- subspace system identification (SSI) --- tie rod --- natural frequencies --- mode shapes --- root-mean-square error (RMSE) --- environmental monitoring --- long-range mapping --- MMS --- sub-millimetric EDM geodetic techniques --- damage detection --- damage localization --- hybrid approach --- neural network --- timber bridges --- stress-laminated timber decks --- monitoring --- humidity-temperature sensors --- wood moisture content --- multi-phase models --- finite element method --- moving load identification --- strain influence line --- load transverse distribution --- strain integral coefficient --- identification error


Book
Remote Sensing in Vessel Detection and Navigation
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue entitled “Remote Sensing in Vessel Detection and Navigation” comprises 15 articles on many topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. It can be said that navigation and vessel detection remain important and hot topics, and a lot of work will continue to be done worldwide. New techniques and methods for analyzing and extracting information from navigational sensors and data have been proposed and verified. Some of these will spark further research, and some are already mature and can be considered for industrial implementation and development.

Keywords

Research & information: general --- autonomous navigation --- automatic radar plotting aid --- safe objects control --- game theory --- computer simulation --- Sentinel-2 --- multispectral --- temporal offsets --- ship --- aircraft --- velocity --- altitude --- parallax --- jet stream --- Unmanned Surface Vessel (USV) --- multi-Global Navigation Satellite System (GNSS) receiver --- bathymetric measurements --- cross track error (XTE) --- SSL --- six-degrees-of-freedom motion --- motion attitude model --- edge detection --- straight-line fitting --- visual saliency --- vessel detection --- video monitoring --- inland waterway --- real-time detection --- neural network --- target recognition --- HRRP --- residual structure --- loss function --- trajectory tracking --- unmanned surface vehicle --- navigation --- bathymetry --- hydrographic survey --- real-time communication --- maritime situational awareness --- ship detection --- Iridium --- on-board --- image processing --- flight campaign --- position estimation --- ranging mode --- single shore station --- AIS --- bag-of-words mechanism --- machine learning --- image analysis --- ship classification --- marine system --- river monitoring system --- feature extraction --- synthetic aperture radar (SAR) ship detection --- multi-stage rotational region based network (MSR2N) --- rotated anchor generation --- multi-stage rotational detection network (MSRDN) --- convolutional neural network (CNN) --- synthetic aperture radar (SAR) --- multiscale and small ship detection --- complex background --- false alarm --- farbon dioxide peaks --- midwave infrared --- FTIR --- adaptive stochastic resonance (ASR) --- matched intrawell response --- nonlinear filter --- line enhancer --- autonomous underwater vehicles (AUVs) --- target tracking --- group targets --- GLMB --- structure --- formation --- remote sensing --- autonomous navigation --- automatic radar plotting aid --- safe objects control --- game theory --- computer simulation --- Sentinel-2 --- multispectral --- temporal offsets --- ship --- aircraft --- velocity --- altitude --- parallax --- jet stream --- Unmanned Surface Vessel (USV) --- multi-Global Navigation Satellite System (GNSS) receiver --- bathymetric measurements --- cross track error (XTE) --- SSL --- six-degrees-of-freedom motion --- motion attitude model --- edge detection --- straight-line fitting --- visual saliency --- vessel detection --- video monitoring --- inland waterway --- real-time detection --- neural network --- target recognition --- HRRP --- residual structure --- loss function --- trajectory tracking --- unmanned surface vehicle --- navigation --- bathymetry --- hydrographic survey --- real-time communication --- maritime situational awareness --- ship detection --- Iridium --- on-board --- image processing --- flight campaign --- position estimation --- ranging mode --- single shore station --- AIS --- bag-of-words mechanism --- machine learning --- image analysis --- ship classification --- marine system --- river monitoring system --- feature extraction --- synthetic aperture radar (SAR) ship detection --- multi-stage rotational region based network (MSR2N) --- rotated anchor generation --- multi-stage rotational detection network (MSRDN) --- convolutional neural network (CNN) --- synthetic aperture radar (SAR) --- multiscale and small ship detection --- complex background --- false alarm --- farbon dioxide peaks --- midwave infrared --- FTIR --- adaptive stochastic resonance (ASR) --- matched intrawell response --- nonlinear filter --- line enhancer --- autonomous underwater vehicles (AUVs) --- target tracking --- group targets --- GLMB --- structure --- formation --- remote sensing


Book
Remote Sensing in Vessel Detection and Navigation
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue entitled “Remote Sensing in Vessel Detection and Navigation” comprises 15 articles on many topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. It can be said that navigation and vessel detection remain important and hot topics, and a lot of work will continue to be done worldwide. New techniques and methods for analyzing and extracting information from navigational sensors and data have been proposed and verified. Some of these will spark further research, and some are already mature and can be considered for industrial implementation and development.

Keywords

Research & information: general --- autonomous navigation --- automatic radar plotting aid --- safe objects control --- game theory --- computer simulation --- Sentinel-2 --- multispectral --- temporal offsets --- ship --- aircraft --- velocity --- altitude --- parallax --- jet stream --- Unmanned Surface Vessel (USV) --- multi-Global Navigation Satellite System (GNSS) receiver --- bathymetric measurements --- cross track error (XTE) --- SSL --- six-degrees-of-freedom motion --- motion attitude model --- edge detection --- straight-line fitting --- visual saliency --- vessel detection --- video monitoring --- inland waterway --- real-time detection --- neural network --- target recognition --- HRRP --- residual structure --- loss function --- trajectory tracking --- unmanned surface vehicle --- navigation --- bathymetry --- hydrographic survey --- real-time communication --- maritime situational awareness --- ship detection --- Iridium --- on-board --- image processing --- flight campaign --- position estimation --- ranging mode --- single shore station --- AIS --- bag-of-words mechanism --- machine learning --- image analysis --- ship classification --- marine system --- river monitoring system --- feature extraction --- synthetic aperture radar (SAR) ship detection --- multi-stage rotational region based network (MSR2N) --- rotated anchor generation --- multi-stage rotational detection network (MSRDN) --- convolutional neural network (CNN) --- synthetic aperture radar (SAR) --- multiscale and small ship detection --- complex background --- false alarm --- farbon dioxide peaks --- midwave infrared --- FTIR --- adaptive stochastic resonance (ASR) --- matched intrawell response --- nonlinear filter --- line enhancer --- autonomous underwater vehicles (AUVs) --- target tracking --- group targets --- GLMB --- structure --- formation --- remote sensing

Listing 1 - 10 of 19 << page
of 2
>>
Sort by