Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Multi-Agent Energy Systems Simulation
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.


Book
Multi-Agent Energy Systems Simulation
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.


Book
Multi-Agent Energy Systems Simulation
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.

Keywords

History of engineering & technology --- EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN) --- EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN)


Book
Distributed Energy Resources Management 2018
Authors: ---
ISBN: 3039281712 3039281704 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue Distributed Energy Resources Management 2018 includes 13 papers, and is a continuation of the Special Issue Distributed Energy Resources Management. The success of the previous edition shows the unquestionable relevance of distributed energy resources in the operation of power and energy systems at both the distribution level and at the wider power system level. Improving the management of distributed energy resources makes it possible to accommodate the higher penetration of intermittent distributed generation and electric vehicle charging. Demand response programs, namely the ones with a distributed nature, allow the consumers to contribute to the increased system efficiency while receiving benefits. This book addresses the management of distributed energy resources, with a focus on methods and techniques to achieve an optimized operation, in order to aggregate the resources namely in the scope of virtual power players and other types of aggregators, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as an enabler for their increased and efficient use.

Keywords

n/a --- virtual power plant --- bidding strategy --- local flexibility market --- multi-period optimal power flow --- flexibility service --- occupant comfort --- unbalanced networks --- decentralized energy management system --- autonomous control --- optimization --- energy storage --- microgrids --- energy efficiency --- distributed energy --- control system --- DSM --- optimal scheduling --- adaptability --- synergistic optimization strategy --- teaching-learning --- distributed generation --- energy storage system --- stackelberg dynamic game --- IoT (Internet of Things) --- supply and demand --- comprehensive benefits --- distributed generator --- frequency bus-signaling --- active distribution networks --- swarm intelligence --- wind --- multi-agent technology --- solar --- power system management --- fault-tolerant control --- indoor environment quality --- multi-temporal optimal power flow --- multi-agent synergetic estimation --- smart grids --- local energy trading --- active power control --- prosumer --- microgrid --- trade agreements --- healthy building --- smart grid --- nonlinear control --- algorithm design and analysis --- batteries --- droop control --- distributed energy resources --- aggregator --- multi-agent system --- frequency control --- particle swarm optimization --- distribution system operator --- building climate control --- low voltage networks --- demand Response --- clustering --- distributed coordination --- demand-side management --- demand response

Listing 1 - 4 of 4
Sort by