Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2020 (6)

2019 (1)

2014 (1)

Listing 1 - 8 of 8
Sort by

Book
Micro- and Nanostructured Microfluidic Devices for Localized Protein Immobilization and Other Biomedical Applications
Author:
ISBN: 1000044095 3731502976 Year: 2014 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

A new immobilization method for the localized adsorption of proteins on thermoplastic surfaces is introduced. Artificial three-phase interfaces were realized by surface structuring to control the wetting behavior which lead to a preferred adsorption in these modified areas. Additionally, different fabrication methods were analyzed to determine mass fabrication capabilities. These fabrication methods also allowed the production of fully structured microchannels to tune the fluids behavior within.


Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.


Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.


Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.


Book
Advances in Experimental and Computational Rheology
Authors: ---
ISBN: 3039213342 3039213334 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spread an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. This Special Issue aims to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems and composites) and processes. This Special Issue will comprise, not only original research papers, but also review articles.


Book
Computational Methods for Polymers
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents recent advances in computational methods for polymers. It covers multiscale modeling of polymers, polymerization reactions, and polymerization processes as well as control, monitoring, and estimation methods applied to polymerization processes. It presents theoretical insights gained from multiscale modeling validated with exprimental measurements. The book consolidates new computational tools and methods developed by academic researchers in this area and presents them systematically. The book is useful for graduate students, researchers, and process engineers and managers.

Keywords

History of engineering & technology --- rapid tooling --- additive manufacturing --- failure modes --- injection molding --- modeling --- olefin --- gas phase --- kinetics --- hyperbranched --- Monte Carlo simulation --- radius of gyration --- span length --- continuous stirred-tank reactor --- data-driven parameter estimation --- retrospective cost model refinement algorithm --- global sensitivity analysis --- polyolefin synthesis --- olefin copolymerization --- reactivity ratios --- electronic effects --- salan catalysts --- post-metallocene --- DFT --- insertion kinetics --- olefin capture --- PolyEThyleneAmidoAmine (PETAA) dendrimer --- molecular topological indices --- Eccentric connectivity index --- copolymerization --- design of experiments --- reactivity ratio estimation --- terpolymerization --- PLP-SEC --- n-butyl acrylate --- degree of branching --- nanostar dendrimer --- irregularity measure --- complexity of structure --- NS1[p] --- NS2[p] --- NS3[p] --- subspace identification --- polymer processing --- model predictive control --- rotational molding --- batch process modeling and control --- method of moments --- free-radical polymerization --- methyl acrylate --- thermal polymerization --- high-temperature polymerization --- molecular graph --- irregularity indices --- dendrimers --- density functional theory --- inhibitors --- phenolic --- stable nitroxide radicals --- styrene --- polymerization --- RAFT polymerization --- multi-rate observer --- nonlinear sampled-data system --- measurements with delay --- parameter fitting --- droplet impact --- viscoelasticity --- volume of fluid method --- process intensification --- operability --- modularity --- process modeling and simulation --- n/a


Book
Computational Methods for Polymers
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents recent advances in computational methods for polymers. It covers multiscale modeling of polymers, polymerization reactions, and polymerization processes as well as control, monitoring, and estimation methods applied to polymerization processes. It presents theoretical insights gained from multiscale modeling validated with exprimental measurements. The book consolidates new computational tools and methods developed by academic researchers in this area and presents them systematically. The book is useful for graduate students, researchers, and process engineers and managers.

Keywords

rapid tooling --- additive manufacturing --- failure modes --- injection molding --- modeling --- olefin --- gas phase --- kinetics --- hyperbranched --- Monte Carlo simulation --- radius of gyration --- span length --- continuous stirred-tank reactor --- data-driven parameter estimation --- retrospective cost model refinement algorithm --- global sensitivity analysis --- polyolefin synthesis --- olefin copolymerization --- reactivity ratios --- electronic effects --- salan catalysts --- post-metallocene --- DFT --- insertion kinetics --- olefin capture --- PolyEThyleneAmidoAmine (PETAA) dendrimer --- molecular topological indices --- Eccentric connectivity index --- copolymerization --- design of experiments --- reactivity ratio estimation --- terpolymerization --- PLP-SEC --- n-butyl acrylate --- degree of branching --- nanostar dendrimer --- irregularity measure --- complexity of structure --- NS1[p] --- NS2[p] --- NS3[p] --- subspace identification --- polymer processing --- model predictive control --- rotational molding --- batch process modeling and control --- method of moments --- free-radical polymerization --- methyl acrylate --- thermal polymerization --- high-temperature polymerization --- molecular graph --- irregularity indices --- dendrimers --- density functional theory --- inhibitors --- phenolic --- stable nitroxide radicals --- styrene --- polymerization --- RAFT polymerization --- multi-rate observer --- nonlinear sampled-data system --- measurements with delay --- parameter fitting --- droplet impact --- viscoelasticity --- volume of fluid method --- process intensification --- operability --- modularity --- process modeling and simulation --- n/a


Book
Computational Methods for Polymers
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents recent advances in computational methods for polymers. It covers multiscale modeling of polymers, polymerization reactions, and polymerization processes as well as control, monitoring, and estimation methods applied to polymerization processes. It presents theoretical insights gained from multiscale modeling validated with exprimental measurements. The book consolidates new computational tools and methods developed by academic researchers in this area and presents them systematically. The book is useful for graduate students, researchers, and process engineers and managers.

Keywords

History of engineering & technology --- rapid tooling --- additive manufacturing --- failure modes --- injection molding --- modeling --- olefin --- gas phase --- kinetics --- hyperbranched --- Monte Carlo simulation --- radius of gyration --- span length --- continuous stirred-tank reactor --- data-driven parameter estimation --- retrospective cost model refinement algorithm --- global sensitivity analysis --- polyolefin synthesis --- olefin copolymerization --- reactivity ratios --- electronic effects --- salan catalysts --- post-metallocene --- DFT --- insertion kinetics --- olefin capture --- PolyEThyleneAmidoAmine (PETAA) dendrimer --- molecular topological indices --- Eccentric connectivity index --- copolymerization --- design of experiments --- reactivity ratio estimation --- terpolymerization --- PLP-SEC --- n-butyl acrylate --- degree of branching --- nanostar dendrimer --- irregularity measure --- complexity of structure --- NS1[p] --- NS2[p] --- NS3[p] --- subspace identification --- polymer processing --- model predictive control --- rotational molding --- batch process modeling and control --- method of moments --- free-radical polymerization --- methyl acrylate --- thermal polymerization --- high-temperature polymerization --- molecular graph --- irregularity indices --- dendrimers --- density functional theory --- inhibitors --- phenolic --- stable nitroxide radicals --- styrene --- polymerization --- RAFT polymerization --- multi-rate observer --- nonlinear sampled-data system --- measurements with delay --- parameter fitting --- droplet impact --- viscoelasticity --- volume of fluid method --- process intensification --- operability --- modularity --- process modeling and simulation

Listing 1 - 8 of 8
Sort by